纳米LiNO3实现了无阳极锂金属电池酯电解质的溶剂约束和有利的Li+溶剂化环境

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-22 DOI:10.1021/acsnano.5c09514
Yue Cao, , , Guohuang Kang, , , Jiachao Duan, , , Rui Yin, , , Ying Meng, , , Kuang Yu*, , , Feiyu Kang, , and , Yidan Cao*, 
{"title":"纳米LiNO3实现了无阳极锂金属电池酯电解质的溶剂约束和有利的Li+溶剂化环境","authors":"Yue Cao,&nbsp;, ,&nbsp;Guohuang Kang,&nbsp;, ,&nbsp;Jiachao Duan,&nbsp;, ,&nbsp;Rui Yin,&nbsp;, ,&nbsp;Ying Meng,&nbsp;, ,&nbsp;Kuang Yu*,&nbsp;, ,&nbsp;Feiyu Kang,&nbsp;, and ,&nbsp;Yidan Cao*,&nbsp;","doi":"10.1021/acsnano.5c09514","DOIUrl":null,"url":null,"abstract":"<p >Manipulating the solvation environment of lithium ions (Li<sup>+</sup>) in liquid electrolytes is crucial for achieving a stable solid electrolyte interphase (SEI) layer on lithium metal anodes. In this work, we report a method to regulate the Li<sup>+</sup> solvation environment in ester-based electrolytes by incorporating lithium nitrate (LiNO<sub>3</sub>) nanoparticles as an additive. The dipole–dipole interactions at the LiNO<sub>3</sub> particle/electrolyte interface result in ordered aggregation of solvent molecules on the surface of LiNO<sub>3</sub> particles, forming a molecular confinement layer that drives the formation of a weak Li<sup>+</sup> solvation environment. This enables Li<sup>+</sup> to bind more readily with anions, facilitates rapid Li<sup>+</sup> conduction, and promotes an inorganic-rich SEI. Electrochemical tests show that such changes induced by LiNO<sub>3</sub> nanoparticles significantly enhance the Coulombic efficiency, reduce lithium nucleation overpotential, suppress lithium dendrite growth, and extend the cycle life of anode-free cells. Besides, with 6000 ppm of H<sub>2</sub>O in the electrolyte, cells achieve stable cycling for over 200 cycles with a capacity retention of 71.21%. These findings provide insights into solvent/ion regulation at solid/liquid interfaces in advanced electrolytes.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 39","pages":"34745–34756"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LiNO3 Nanoparticle Enabled Solvent Confinement and a Favorable Li+ Solvation Environment in Ester Electrolytes for Anode-Free Lithium Metal Batteries\",\"authors\":\"Yue Cao,&nbsp;, ,&nbsp;Guohuang Kang,&nbsp;, ,&nbsp;Jiachao Duan,&nbsp;, ,&nbsp;Rui Yin,&nbsp;, ,&nbsp;Ying Meng,&nbsp;, ,&nbsp;Kuang Yu*,&nbsp;, ,&nbsp;Feiyu Kang,&nbsp;, and ,&nbsp;Yidan Cao*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c09514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Manipulating the solvation environment of lithium ions (Li<sup>+</sup>) in liquid electrolytes is crucial for achieving a stable solid electrolyte interphase (SEI) layer on lithium metal anodes. In this work, we report a method to regulate the Li<sup>+</sup> solvation environment in ester-based electrolytes by incorporating lithium nitrate (LiNO<sub>3</sub>) nanoparticles as an additive. The dipole–dipole interactions at the LiNO<sub>3</sub> particle/electrolyte interface result in ordered aggregation of solvent molecules on the surface of LiNO<sub>3</sub> particles, forming a molecular confinement layer that drives the formation of a weak Li<sup>+</sup> solvation environment. This enables Li<sup>+</sup> to bind more readily with anions, facilitates rapid Li<sup>+</sup> conduction, and promotes an inorganic-rich SEI. Electrochemical tests show that such changes induced by LiNO<sub>3</sub> nanoparticles significantly enhance the Coulombic efficiency, reduce lithium nucleation overpotential, suppress lithium dendrite growth, and extend the cycle life of anode-free cells. Besides, with 6000 ppm of H<sub>2</sub>O in the electrolyte, cells achieve stable cycling for over 200 cycles with a capacity retention of 71.21%. These findings provide insights into solvent/ion regulation at solid/liquid interfaces in advanced electrolytes.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 39\",\"pages\":\"34745–34756\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c09514\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c09514","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

控制液体电解质中锂离子(Li+)的溶剂化环境对于在锂金属阳极上获得稳定的固体电解质界面层(SEI)至关重要。在这项工作中,我们报告了一种通过添加硝酸锂纳米颗粒作为添加剂来调节酯基电解质中Li+溶剂化环境的方法。在LiNO3颗粒/电解质界面上的偶极-偶极相互作用导致溶剂分子在LiNO3颗粒表面有序聚集,形成分子约束层,驱动弱Li+溶剂化环境的形成。这使得Li+更容易与阴离子结合,促进Li+的快速传导,并促进了无机富SEI。电化学实验表明,LiNO3纳米颗粒诱导的这种变化显著提高了电池的库仑效率,降低了锂成核过电位,抑制了锂枝晶的生长,延长了无阳极电池的循环寿命。此外,当电解液中H2O含量为6000 ppm时,电池可以稳定循环200次以上,容量保持率为71.21%。这些发现为高级电解质中固/液界面的溶剂/离子调节提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

LiNO3 Nanoparticle Enabled Solvent Confinement and a Favorable Li+ Solvation Environment in Ester Electrolytes for Anode-Free Lithium Metal Batteries

LiNO3 Nanoparticle Enabled Solvent Confinement and a Favorable Li+ Solvation Environment in Ester Electrolytes for Anode-Free Lithium Metal Batteries

Manipulating the solvation environment of lithium ions (Li+) in liquid electrolytes is crucial for achieving a stable solid electrolyte interphase (SEI) layer on lithium metal anodes. In this work, we report a method to regulate the Li+ solvation environment in ester-based electrolytes by incorporating lithium nitrate (LiNO3) nanoparticles as an additive. The dipole–dipole interactions at the LiNO3 particle/electrolyte interface result in ordered aggregation of solvent molecules on the surface of LiNO3 particles, forming a molecular confinement layer that drives the formation of a weak Li+ solvation environment. This enables Li+ to bind more readily with anions, facilitates rapid Li+ conduction, and promotes an inorganic-rich SEI. Electrochemical tests show that such changes induced by LiNO3 nanoparticles significantly enhance the Coulombic efficiency, reduce lithium nucleation overpotential, suppress lithium dendrite growth, and extend the cycle life of anode-free cells. Besides, with 6000 ppm of H2O in the electrolyte, cells achieve stable cycling for over 200 cycles with a capacity retention of 71.21%. These findings provide insights into solvent/ion regulation at solid/liquid interfaces in advanced electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信