通过混合电解质调节界面亲核化学,实现稳定的4.8 v级富锂||锂金属电池。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-22 DOI:10.1021/acsnano.5c13157
Chenyang Jiao, , , Qizheng Zheng, , , Kang Zhang, , , Jiyuan Xue, , , Na Liu, , , Baodan Zhang, , , Yueli Lin, , , Xuequan Zhu, , , Changhao Wang, , , Hong-Gang Liao, , , Chong-Heng Shen*, , , Yeguo Zou*, , , Yu Qiao*, , and , Shi-Gang Sun, 
{"title":"通过混合电解质调节界面亲核化学,实现稳定的4.8 v级富锂||锂金属电池。","authors":"Chenyang Jiao,&nbsp;, ,&nbsp;Qizheng Zheng,&nbsp;, ,&nbsp;Kang Zhang,&nbsp;, ,&nbsp;Jiyuan Xue,&nbsp;, ,&nbsp;Na Liu,&nbsp;, ,&nbsp;Baodan Zhang,&nbsp;, ,&nbsp;Yueli Lin,&nbsp;, ,&nbsp;Xuequan Zhu,&nbsp;, ,&nbsp;Changhao Wang,&nbsp;, ,&nbsp;Hong-Gang Liao,&nbsp;, ,&nbsp;Chong-Heng Shen*,&nbsp;, ,&nbsp;Yeguo Zou*,&nbsp;, ,&nbsp;Yu Qiao*,&nbsp;, and ,&nbsp;Shi-Gang Sun,&nbsp;","doi":"10.1021/acsnano.5c13157","DOIUrl":null,"url":null,"abstract":"<p >High-energy-density Li-rich layered oxide-based Li-metal batteries depend critically on the unique anionic redox. However, severe electrolyte decomposition and interfacial structural degradation hinder the longevity and stability of Li-rich||Li-metal batteries. Here, we show that a rational hybrid electrolyte design strategy can regulate interfacial chemistry through precise manipulation of cathode surface-exposed nucleophilic species. As a proof of concept, ethyl methyl sulfone is employed as the primary solvent due to its oxidative stability and resistance to nucleophilic attack, simultaneously strategically fabricating a fluorinated ether as a cosolvent that directs nucleophilic reaction toward its targeted functionality. Furthermore, this hybrid electrolyte design simultaneously facilitates the formation of a LiF-rich cathode electrolyte interphase (CEI) and reorganizes the solid electrolyte interphase on the Li metal from the preferential decomposition of cosolvents and anions. As a result, ultrahigh Coulombic efficiency (CE) (&gt;99.4%) for Li-rich cathodes and enhanced Li-metal plating/stripping reversibility are achieved. Consequently, the optimized electrolyte demonstrates exceptional cycling stability, retaining 92% capacity over 100 cycles with ultrahigh average CE (&gt;99.3%) under demanding conditions (limited Li supply, N/P = 2). Remarkably, this hybrid electrolyte enabled superior operation with anode-free cell architectures and enabled extreme temperatures (−30 to 55 °C) cycling. By effectively transforming detrimental nucleophilic attack into interfacial enhancement, this work establishes a new paradigm for electrolyte design in utilizing anionic redox chemistry.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 39","pages":"35141–35153"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regulating Interfacial Nucleophilic Chemistry via Hybrid Electrolyte Enables Stable 4.8 V-Class Li-Rich||Li-Metal Batteries\",\"authors\":\"Chenyang Jiao,&nbsp;, ,&nbsp;Qizheng Zheng,&nbsp;, ,&nbsp;Kang Zhang,&nbsp;, ,&nbsp;Jiyuan Xue,&nbsp;, ,&nbsp;Na Liu,&nbsp;, ,&nbsp;Baodan Zhang,&nbsp;, ,&nbsp;Yueli Lin,&nbsp;, ,&nbsp;Xuequan Zhu,&nbsp;, ,&nbsp;Changhao Wang,&nbsp;, ,&nbsp;Hong-Gang Liao,&nbsp;, ,&nbsp;Chong-Heng Shen*,&nbsp;, ,&nbsp;Yeguo Zou*,&nbsp;, ,&nbsp;Yu Qiao*,&nbsp;, and ,&nbsp;Shi-Gang Sun,&nbsp;\",\"doi\":\"10.1021/acsnano.5c13157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >High-energy-density Li-rich layered oxide-based Li-metal batteries depend critically on the unique anionic redox. However, severe electrolyte decomposition and interfacial structural degradation hinder the longevity and stability of Li-rich||Li-metal batteries. Here, we show that a rational hybrid electrolyte design strategy can regulate interfacial chemistry through precise manipulation of cathode surface-exposed nucleophilic species. As a proof of concept, ethyl methyl sulfone is employed as the primary solvent due to its oxidative stability and resistance to nucleophilic attack, simultaneously strategically fabricating a fluorinated ether as a cosolvent that directs nucleophilic reaction toward its targeted functionality. Furthermore, this hybrid electrolyte design simultaneously facilitates the formation of a LiF-rich cathode electrolyte interphase (CEI) and reorganizes the solid electrolyte interphase on the Li metal from the preferential decomposition of cosolvents and anions. As a result, ultrahigh Coulombic efficiency (CE) (&gt;99.4%) for Li-rich cathodes and enhanced Li-metal plating/stripping reversibility are achieved. Consequently, the optimized electrolyte demonstrates exceptional cycling stability, retaining 92% capacity over 100 cycles with ultrahigh average CE (&gt;99.3%) under demanding conditions (limited Li supply, N/P = 2). Remarkably, this hybrid electrolyte enabled superior operation with anode-free cell architectures and enabled extreme temperatures (−30 to 55 °C) cycling. By effectively transforming detrimental nucleophilic attack into interfacial enhancement, this work establishes a new paradigm for electrolyte design in utilizing anionic redox chemistry.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 39\",\"pages\":\"35141–35153\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c13157\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c13157","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

高能量密度富锂层状氧化物基锂金属电池关键依赖于独特的阴离子氧化还原。然而,严重的电解液分解和界面结构退化阻碍了富锂||锂金属电池的寿命和稳定性。在这里,我们证明了合理的混合电解质设计策略可以通过精确操纵阴极表面暴露的亲核物质来调节界面化学。作为概念的证明,由于其氧化稳定性和亲核性攻击,甲基乙基砜被用作主要溶剂,同时战略性地制造了一种氟化醚作为助溶剂,将亲核反应导向其目标功能。此外,这种混合电解质设计同时促进了富锂阴极电解质界面(CEI)的形成,并从助溶剂和阴离子的优先分解中重组了锂金属上的固体电解质界面。结果表明,富锂阴极具有超高的库仑效率(CE)(>99.4%)和增强的锂金属电镀/剥离可逆性。因此,优化后的电解质表现出优异的循环稳定性,在苛刻的条件下(有限的锂供应,N/P = 2),在100次循环中保持92%的容量,具有超高的平均CE(>99.3%)。值得注意的是,这种混合电解质在无阳极电池结构下实现了卓越的操作,并实现了极端温度(-30至55°C)循环。通过有效地将有害的亲核攻击转化为界面增强,本工作为利用阴离子氧化还原化学设计电解质建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Regulating Interfacial Nucleophilic Chemistry via Hybrid Electrolyte Enables Stable 4.8 V-Class Li-Rich||Li-Metal Batteries

Regulating Interfacial Nucleophilic Chemistry via Hybrid Electrolyte Enables Stable 4.8 V-Class Li-Rich||Li-Metal Batteries

High-energy-density Li-rich layered oxide-based Li-metal batteries depend critically on the unique anionic redox. However, severe electrolyte decomposition and interfacial structural degradation hinder the longevity and stability of Li-rich||Li-metal batteries. Here, we show that a rational hybrid electrolyte design strategy can regulate interfacial chemistry through precise manipulation of cathode surface-exposed nucleophilic species. As a proof of concept, ethyl methyl sulfone is employed as the primary solvent due to its oxidative stability and resistance to nucleophilic attack, simultaneously strategically fabricating a fluorinated ether as a cosolvent that directs nucleophilic reaction toward its targeted functionality. Furthermore, this hybrid electrolyte design simultaneously facilitates the formation of a LiF-rich cathode electrolyte interphase (CEI) and reorganizes the solid electrolyte interphase on the Li metal from the preferential decomposition of cosolvents and anions. As a result, ultrahigh Coulombic efficiency (CE) (>99.4%) for Li-rich cathodes and enhanced Li-metal plating/stripping reversibility are achieved. Consequently, the optimized electrolyte demonstrates exceptional cycling stability, retaining 92% capacity over 100 cycles with ultrahigh average CE (>99.3%) under demanding conditions (limited Li supply, N/P = 2). Remarkably, this hybrid electrolyte enabled superior operation with anode-free cell architectures and enabled extreme temperatures (−30 to 55 °C) cycling. By effectively transforming detrimental nucleophilic attack into interfacial enhancement, this work establishes a new paradigm for electrolyte design in utilizing anionic redox chemistry.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信