通过底物诱导的蛋白质变构循环的蛋白质囊泡的自主自我脉动。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-09-22 DOI:10.1021/acsnano.5c08832
Yulian Zhang, , , Yixin Wang, , , Xin Liang, , , Xuefeng Li, , and , Qiang Yan*, 
{"title":"通过底物诱导的蛋白质变构循环的蛋白质囊泡的自主自我脉动。","authors":"Yulian Zhang,&nbsp;, ,&nbsp;Yixin Wang,&nbsp;, ,&nbsp;Xin Liang,&nbsp;, ,&nbsp;Xuefeng Li,&nbsp;, and ,&nbsp;Qiang Yan*,&nbsp;","doi":"10.1021/acsnano.5c08832","DOIUrl":null,"url":null,"abstract":"<p >Oscillatory phenomena in organisms are vital to sustaining life rhythms, like the pulsation of cardiac muscle cells. Mimicking such biotic oscillating behaviors to realize periodic chemical-to-mechanical energy conversion is an essential premise for the assembly of lifelike systems in vitro. Here we report a protein-based vesicle system that can do rhythmic, autonomous pulsation in a nonequilibrium state through a substrate-induced protein allosteric cycle. Organizing protein kinase–polypeptide mega-amphiphiles into a vesicular structure, they show cyclical shrinking and swelling motion due to reciprocating conformational compaction and relaxation of kinase activated by its specific allosteric substrates, ATP and AMP. Moreover, control of the substrate level allows one to regulate the periodicity, amplitude, and lifetime of the proteinosome oscillation. This can further periodically change the membrane permeability, thus offering the ability to program the transmembrane traffic in synthetic protein-based assemblies.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 39","pages":"34686–34697"},"PeriodicalIF":16.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous Self-Pulsation of Protein Vesicles via Substrate-Induced Protein Allosteric Cycle\",\"authors\":\"Yulian Zhang,&nbsp;, ,&nbsp;Yixin Wang,&nbsp;, ,&nbsp;Xin Liang,&nbsp;, ,&nbsp;Xuefeng Li,&nbsp;, and ,&nbsp;Qiang Yan*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c08832\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Oscillatory phenomena in organisms are vital to sustaining life rhythms, like the pulsation of cardiac muscle cells. Mimicking such biotic oscillating behaviors to realize periodic chemical-to-mechanical energy conversion is an essential premise for the assembly of lifelike systems in vitro. Here we report a protein-based vesicle system that can do rhythmic, autonomous pulsation in a nonequilibrium state through a substrate-induced protein allosteric cycle. Organizing protein kinase–polypeptide mega-amphiphiles into a vesicular structure, they show cyclical shrinking and swelling motion due to reciprocating conformational compaction and relaxation of kinase activated by its specific allosteric substrates, ATP and AMP. Moreover, control of the substrate level allows one to regulate the periodicity, amplitude, and lifetime of the proteinosome oscillation. This can further periodically change the membrane permeability, thus offering the ability to program the transmembrane traffic in synthetic protein-based assemblies.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 39\",\"pages\":\"34686–34697\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c08832\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c08832","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

生物体中的振荡现象对维持生命节律至关重要,比如心肌细胞的脉动。模拟这种生物振荡行为来实现周期性的化学能到机械能的转换是在体外组装类生命系统的必要前提。在这里,我们报道了一个基于蛋白质的囊泡系统,它可以通过底物诱导的蛋白质变构循环在非平衡状态下进行有节奏的自主脉动。将蛋白激酶-多肽巨型两亲体组织成囊泡结构,由于其特定的变构底物ATP和AMP激活的激酶的往复构象压实和松弛,它们表现出周期性的收缩和肿胀运动。此外,控制底物水平允许人们调节蛋白体振荡的周期性、振幅和寿命。这可以进一步周期性地改变膜的渗透性,从而提供了编程合成蛋白质组件跨膜交通的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Autonomous Self-Pulsation of Protein Vesicles via Substrate-Induced Protein Allosteric Cycle

Autonomous Self-Pulsation of Protein Vesicles via Substrate-Induced Protein Allosteric Cycle

Oscillatory phenomena in organisms are vital to sustaining life rhythms, like the pulsation of cardiac muscle cells. Mimicking such biotic oscillating behaviors to realize periodic chemical-to-mechanical energy conversion is an essential premise for the assembly of lifelike systems in vitro. Here we report a protein-based vesicle system that can do rhythmic, autonomous pulsation in a nonequilibrium state through a substrate-induced protein allosteric cycle. Organizing protein kinase–polypeptide mega-amphiphiles into a vesicular structure, they show cyclical shrinking and swelling motion due to reciprocating conformational compaction and relaxation of kinase activated by its specific allosteric substrates, ATP and AMP. Moreover, control of the substrate level allows one to regulate the periodicity, amplitude, and lifetime of the proteinosome oscillation. This can further periodically change the membrane permeability, thus offering the ability to program the transmembrane traffic in synthetic protein-based assemblies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信