乙醇氧化催化co2到c2 +的硫增强配对电催化中CO活化的原位探测

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Feng Ming Yap,Shaoyu Yuan,Jian Yiing Loh,Jingjuan Wang,Xianhai Zeng,Wee-Jun Ong
{"title":"乙醇氧化催化co2到c2 +的硫增强配对电催化中CO活化的原位探测","authors":"Feng Ming Yap,Shaoyu Yuan,Jian Yiing Loh,Jingjuan Wang,Xianhai Zeng,Wee-Jun Ong","doi":"10.1002/anie.202513840","DOIUrl":null,"url":null,"abstract":"In a world striving for sustainable energy, advanced electrocatalysts are pivotal to enabling efficient chemical transformations with minimal energy costs. Herein, we uncover a practical approach for the simultaneous electrochemical CO2 reduction (CO2RR) and alcohol oxidation (AOR), enabling the selective valuable chemicals production. Central to this innovation is a self-supported electrocatalyst, featuring sulfur-enhanced CuBi2O4 nanospheres anchored on NrGO nanosheets (SCB/NG), achieved a faradaic efficiency for C2+ products (FEC2+) exceeding 92.4% over 200 h, while demonstrating near-total selectivity for benzaldehyde and >83% for furfural. Beyond that, in situ Raman spectroscopy and DFT calculations reveal *CO dimerization and the key intermediates coverage, providing deep mechanistic insights into the reaction pathway. Additionally, by being integrated into a solar-powered platform, the bifunctional system achieves a solar-to-fuel conversion efficiency of 16% with over 98% retention, offering a scalable strategy for coupling CO2 utilization with high-value chemical production and paving the way toward energy-efficient, carbon-neutral technologies.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"18 1","pages":"e202513840"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In-Situ Probing CO Activation in Sulfur-Enhanced Paired Electrocatalysis for CO2-to-C2+ Conversion with Alcohol Oxidation.\",\"authors\":\"Feng Ming Yap,Shaoyu Yuan,Jian Yiing Loh,Jingjuan Wang,Xianhai Zeng,Wee-Jun Ong\",\"doi\":\"10.1002/anie.202513840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In a world striving for sustainable energy, advanced electrocatalysts are pivotal to enabling efficient chemical transformations with minimal energy costs. Herein, we uncover a practical approach for the simultaneous electrochemical CO2 reduction (CO2RR) and alcohol oxidation (AOR), enabling the selective valuable chemicals production. Central to this innovation is a self-supported electrocatalyst, featuring sulfur-enhanced CuBi2O4 nanospheres anchored on NrGO nanosheets (SCB/NG), achieved a faradaic efficiency for C2+ products (FEC2+) exceeding 92.4% over 200 h, while demonstrating near-total selectivity for benzaldehyde and >83% for furfural. Beyond that, in situ Raman spectroscopy and DFT calculations reveal *CO dimerization and the key intermediates coverage, providing deep mechanistic insights into the reaction pathway. Additionally, by being integrated into a solar-powered platform, the bifunctional system achieves a solar-to-fuel conversion efficiency of 16% with over 98% retention, offering a scalable strategy for coupling CO2 utilization with high-value chemical production and paving the way toward energy-efficient, carbon-neutral technologies.\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"18 1\",\"pages\":\"e202513840\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202513840\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202513840","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在一个追求可持续能源的世界里,先进的电催化剂对于以最小的能源成本实现高效的化学转化至关重要。在此,我们发现了一种同时进行电化学CO2还原(CO2RR)和酒精氧化(AOR)的实用方法,从而实现了选择性有价值化学品的生产。这项创新的核心是一种自持型电催化剂,其特点是锚定在NrGO纳米片(SCB/NG)上的硫增强CuBi2O4纳米球,在200小时内对C2+产物(FEC2+)的法拉第效率超过92.4%,同时对苯甲醛和糠醛的选择性接近100%,为83%。除此之外,原位拉曼光谱和DFT计算揭示了*CO二聚化和关键中间体的覆盖,为反应途径提供了深入的机理见解。此外,通过集成到太阳能平台中,该双功能系统实现了16%的太阳能到燃料的转换效率,保留率超过98%,为将二氧化碳利用与高价值化学品生产相结合提供了可扩展的策略,为节能、碳中和技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
In-Situ Probing CO Activation in Sulfur-Enhanced Paired Electrocatalysis for CO2-to-C2+ Conversion with Alcohol Oxidation.
In a world striving for sustainable energy, advanced electrocatalysts are pivotal to enabling efficient chemical transformations with minimal energy costs. Herein, we uncover a practical approach for the simultaneous electrochemical CO2 reduction (CO2RR) and alcohol oxidation (AOR), enabling the selective valuable chemicals production. Central to this innovation is a self-supported electrocatalyst, featuring sulfur-enhanced CuBi2O4 nanospheres anchored on NrGO nanosheets (SCB/NG), achieved a faradaic efficiency for C2+ products (FEC2+) exceeding 92.4% over 200 h, while demonstrating near-total selectivity for benzaldehyde and >83% for furfural. Beyond that, in situ Raman spectroscopy and DFT calculations reveal *CO dimerization and the key intermediates coverage, providing deep mechanistic insights into the reaction pathway. Additionally, by being integrated into a solar-powered platform, the bifunctional system achieves a solar-to-fuel conversion efficiency of 16% with over 98% retention, offering a scalable strategy for coupling CO2 utilization with high-value chemical production and paving the way toward energy-efficient, carbon-neutral technologies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信