含铁Cr-MOF衍生的高效CO2加氢催化剂的可调形貌

IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2025-07-27 DOI:10.1002/cctc.202500784
Swarit Dwivedi, Vignesh Pakkiam, Rajan Lakshman, Sanje Mahasivam, Malgorzata Kowalik, Alan L. Chaffee, Adri C.T. van Duin, Akshat Tanksale, Nikhil V. Medhekar
{"title":"含铁Cr-MOF衍生的高效CO2加氢催化剂的可调形貌","authors":"Swarit Dwivedi,&nbsp;Vignesh Pakkiam,&nbsp;Rajan Lakshman,&nbsp;Sanje Mahasivam,&nbsp;Malgorzata Kowalik,&nbsp;Alan L. Chaffee,&nbsp;Adri C.T. van Duin,&nbsp;Akshat Tanksale,&nbsp;Nikhil V. Medhekar","doi":"10.1002/cctc.202500784","DOIUrl":null,"url":null,"abstract":"<p>We report a stable MOF-derived bimetallic FeCrC<i><sub>x</sub></i> catalyst for heterogeneous catalytic reactions. Using ReaxFF molecular dynamics, we uncover the atomistic pathways that drive the thermal conversion of MIL-101(Cr) and its Fe-loaded analogue. The presence of iron in the framework lowers its stability, resulting in higher mass loss and fragmentation of the aromatic linkers during thermal transformation. Our simulations predict the formation of highly dispersed Fe─Cr core-shell nanoparticles with a Cr core when transformed at high temperatures. However, our simulations show that Fe nanoparticles are embedded in a chromium-carbon matrix at lower temperatures. This MIL-101(Cr)-derived FeCrC<i><sub>x</sub></i> (Fe and Cr embedded in a residual carbon-rich environment) catalyst was then experimentally prepared and demonstrated activity in the aqueous phase for CO<sub>2</sub> hydrogenation to methanol. Significantly, the MOF-derived FeCrC<i><sub>x</sub></i> catalyst transformed at 500 °C showed approximately five times better yield than the catalyst treated at 400 °C, which we attribute to the Fe─Cr core-shell particles in the former. We are confident that our integrated computational-experimental strategy will accelerate the discovery of MOF-derived bimetallic catalysts and unlock their potential in a broad spectrum of applications.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 18","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202500784","citationCount":"0","resultStr":"{\"title\":\"Tunable Morphologies of Fe-Embedded Cr-MOF Derived Catalyst for Efficient CO2 Hydrogenation\",\"authors\":\"Swarit Dwivedi,&nbsp;Vignesh Pakkiam,&nbsp;Rajan Lakshman,&nbsp;Sanje Mahasivam,&nbsp;Malgorzata Kowalik,&nbsp;Alan L. Chaffee,&nbsp;Adri C.T. van Duin,&nbsp;Akshat Tanksale,&nbsp;Nikhil V. Medhekar\",\"doi\":\"10.1002/cctc.202500784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We report a stable MOF-derived bimetallic FeCrC<i><sub>x</sub></i> catalyst for heterogeneous catalytic reactions. Using ReaxFF molecular dynamics, we uncover the atomistic pathways that drive the thermal conversion of MIL-101(Cr) and its Fe-loaded analogue. The presence of iron in the framework lowers its stability, resulting in higher mass loss and fragmentation of the aromatic linkers during thermal transformation. Our simulations predict the formation of highly dispersed Fe─Cr core-shell nanoparticles with a Cr core when transformed at high temperatures. However, our simulations show that Fe nanoparticles are embedded in a chromium-carbon matrix at lower temperatures. This MIL-101(Cr)-derived FeCrC<i><sub>x</sub></i> (Fe and Cr embedded in a residual carbon-rich environment) catalyst was then experimentally prepared and demonstrated activity in the aqueous phase for CO<sub>2</sub> hydrogenation to methanol. Significantly, the MOF-derived FeCrC<i><sub>x</sub></i> catalyst transformed at 500 °C showed approximately five times better yield than the catalyst treated at 400 °C, which we attribute to the Fe─Cr core-shell particles in the former. We are confident that our integrated computational-experimental strategy will accelerate the discovery of MOF-derived bimetallic catalysts and unlock their potential in a broad spectrum of applications.</p>\",\"PeriodicalId\":141,\"journal\":{\"name\":\"ChemCatChem\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/cctc.202500784\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemCatChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500784\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500784","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们报道了一种稳定的mof衍生的双金属fecrx催化剂,用于非均相催化反应。利用ReaxFF分子动力学,我们揭示了驱动MIL-101(Cr)及其载铁类似物热转化的原子途径。铁在骨架中的存在降低了其稳定性,导致在热转化过程中更高的质量损失和芳香连接剂的破碎。我们的模拟预测了高温转化时形成具有Cr核的高度分散的Fe─Cr核壳纳米颗粒。然而,我们的模拟表明,铁纳米颗粒在较低的温度下嵌入在铬碳基体中。然后实验制备了MIL-101(Cr)衍生的FeCrCx (Fe和Cr嵌入残余富碳环境中)催化剂,并在水相中证明了CO2加氢成甲醇的活性。值得注意的是,mof衍生的FeCrCx催化剂在500°C下转化的产率比在400°C下处理的催化剂高约5倍,我们将其归因于前者中的Fe─Cr核壳颗粒。我们相信,我们的综合计算实验策略将加速mof衍生双金属催化剂的发现,并在广泛的应用中释放它们的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Tunable Morphologies of Fe-Embedded Cr-MOF Derived Catalyst for Efficient CO2 Hydrogenation

Tunable Morphologies of Fe-Embedded Cr-MOF Derived Catalyst for Efficient CO2 Hydrogenation

Tunable Morphologies of Fe-Embedded Cr-MOF Derived Catalyst for Efficient CO2 Hydrogenation

Tunable Morphologies of Fe-Embedded Cr-MOF Derived Catalyst for Efficient CO2 Hydrogenation

We report a stable MOF-derived bimetallic FeCrCx catalyst for heterogeneous catalytic reactions. Using ReaxFF molecular dynamics, we uncover the atomistic pathways that drive the thermal conversion of MIL-101(Cr) and its Fe-loaded analogue. The presence of iron in the framework lowers its stability, resulting in higher mass loss and fragmentation of the aromatic linkers during thermal transformation. Our simulations predict the formation of highly dispersed Fe─Cr core-shell nanoparticles with a Cr core when transformed at high temperatures. However, our simulations show that Fe nanoparticles are embedded in a chromium-carbon matrix at lower temperatures. This MIL-101(Cr)-derived FeCrCx (Fe and Cr embedded in a residual carbon-rich environment) catalyst was then experimentally prepared and demonstrated activity in the aqueous phase for CO2 hydrogenation to methanol. Significantly, the MOF-derived FeCrCx catalyst transformed at 500 °C showed approximately five times better yield than the catalyst treated at 400 °C, which we attribute to the Fe─Cr core-shell particles in the former. We are confident that our integrated computational-experimental strategy will accelerate the discovery of MOF-derived bimetallic catalysts and unlock their potential in a broad spectrum of applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信