Sepideh Ghaffari, Ali Javadmanesh, Ricardo Machado, Stephan Jaronski, Lukasz L. Stelinski, Javad Karimi
{"title":"探讨番茄与内生真菌相互作用的遗传和分子机制:关键基因和途径的生物信息学分析与综述","authors":"Sepideh Ghaffari, Ali Javadmanesh, Ricardo Machado, Stephan Jaronski, Lukasz L. Stelinski, Javad Karimi","doi":"10.1111/jph.70172","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Endophytic fungi are known to improve plant resistance to stress and enhance plant performance. A comprehensive understanding of the mechanisms underlying endophytic fungi-mediated systemic resistance is crucial for the widespread adoption of these fungi as beneficial biological control agents. To unravel the complex interactions between tomato and endophytic fungi, we compared the transcriptomic responses of tomato plants induced with <i>Trichoderma harzianum</i>, <i>T. afroharzianum</i>, <i>T. atroviride</i> and <i>Pochonia chlamydosporia</i>. RNA-seq datasets were used to assess the common expression patterns in defence-related pathways. Our analysis revealed that a group of common key genes were significantly induced in all investigations examined. Additionally, we observed that 20 transcripts related to anion transport, which is crucial for early plant immune responses, were consistently enriched in all the studies. These findings highlight the conserved and specific nature of plant–endophyte interactions and their potential for enhancing plant resistance through targeted genetic manipulation and breeding for long-lasting resistance.</p>\n </div>","PeriodicalId":16843,"journal":{"name":"Journal of Phytopathology","volume":"173 5","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Genetic and Molecular Mechanisms Underlying the Interaction Between Tomato and Endophytic Fungi: A Bioinformatic Analysis and Review of Key Genes and Pathways\",\"authors\":\"Sepideh Ghaffari, Ali Javadmanesh, Ricardo Machado, Stephan Jaronski, Lukasz L. Stelinski, Javad Karimi\",\"doi\":\"10.1111/jph.70172\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Endophytic fungi are known to improve plant resistance to stress and enhance plant performance. A comprehensive understanding of the mechanisms underlying endophytic fungi-mediated systemic resistance is crucial for the widespread adoption of these fungi as beneficial biological control agents. To unravel the complex interactions between tomato and endophytic fungi, we compared the transcriptomic responses of tomato plants induced with <i>Trichoderma harzianum</i>, <i>T. afroharzianum</i>, <i>T. atroviride</i> and <i>Pochonia chlamydosporia</i>. RNA-seq datasets were used to assess the common expression patterns in defence-related pathways. Our analysis revealed that a group of common key genes were significantly induced in all investigations examined. Additionally, we observed that 20 transcripts related to anion transport, which is crucial for early plant immune responses, were consistently enriched in all the studies. These findings highlight the conserved and specific nature of plant–endophyte interactions and their potential for enhancing plant resistance through targeted genetic manipulation and breeding for long-lasting resistance.</p>\\n </div>\",\"PeriodicalId\":16843,\"journal\":{\"name\":\"Journal of Phytopathology\",\"volume\":\"173 5\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Phytopathology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jph.70172\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jph.70172","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Exploring the Genetic and Molecular Mechanisms Underlying the Interaction Between Tomato and Endophytic Fungi: A Bioinformatic Analysis and Review of Key Genes and Pathways
Endophytic fungi are known to improve plant resistance to stress and enhance plant performance. A comprehensive understanding of the mechanisms underlying endophytic fungi-mediated systemic resistance is crucial for the widespread adoption of these fungi as beneficial biological control agents. To unravel the complex interactions between tomato and endophytic fungi, we compared the transcriptomic responses of tomato plants induced with Trichoderma harzianum, T. afroharzianum, T. atroviride and Pochonia chlamydosporia. RNA-seq datasets were used to assess the common expression patterns in defence-related pathways. Our analysis revealed that a group of common key genes were significantly induced in all investigations examined. Additionally, we observed that 20 transcripts related to anion transport, which is crucial for early plant immune responses, were consistently enriched in all the studies. These findings highlight the conserved and specific nature of plant–endophyte interactions and their potential for enhancing plant resistance through targeted genetic manipulation and breeding for long-lasting resistance.
期刊介绍:
Journal of Phytopathology publishes original and review articles on all scientific aspects of applied phytopathology in agricultural and horticultural crops. Preference is given to contributions improving our understanding of the biotic and abiotic determinants of plant diseases, including epidemics and damage potential, as a basis for innovative disease management, modelling and forecasting. This includes practical aspects and the development of methods for disease diagnosis as well as infection bioassays.
Studies at the population, organism, physiological, biochemical and molecular genetic level are welcome. The journal scope comprises the pathology and epidemiology of plant diseases caused by microbial pathogens, viruses and nematodes.
Accepted papers should advance our conceptual knowledge of plant diseases, rather than presenting descriptive or screening data unrelated to phytopathological mechanisms or functions. Results from unrepeated experimental conditions or data with no or inappropriate statistical processing will not be considered. Authors are encouraged to look at past issues to ensure adherence to the standards of the journal.