L. G. Vacher, V. T. H. Phan, L. Bonal, M. Iskakova, O. Poch, P. Beck, E. Quirico, R. C. Ogliore
{"title":"来自碳质小行星(162173)Ryugu的酰胺:纳米光谱和同位素表征","authors":"L. G. Vacher, V. T. H. Phan, L. Bonal, M. Iskakova, O. Poch, P. Beck, E. Quirico, R. C. Ogliore","doi":"10.1111/maps.70019","DOIUrl":null,"url":null,"abstract":"<p>C-type asteroids, such as asteroid (162173) Ryugu, may have played a key role in delivering light elements to early Earth. Nitrogen (N)-bearing molecules have been chemically identified in some Ryugu grains, and based on the faint 3.06 μm absorption band observed by the hyperspectral microscope MicrOmega, NH-bearing compounds seem to be spread at the global scale in the collection. However, the chemical forms of these NH-bearing compounds—whether organic molecules, ammonium (NH<sub>4</sub><sup>+</sup>) salts, NH<sub>4</sub><sup>+</sup>- or NH-organics-bearing phyllosilicates, or other forms—remain to be better understood. In this study, we report the characterization of two Ryugu particles (C0050 and C0052) using infrared spectroscopy at millimeter, micrometer, and nanometer scales, along with NanoSIMS techniques to constrain the nature and origin of NH-bearing components in the Ryugu asteroid. Our findings show that Ryugu's C0052 particle contains rare (~1 vol%), micrometer-sized NH-rich organic compounds with peaks at 1660 cm<sup>−1</sup> (mainly due to C=O stretching of the amide I band) and 1550 cm<sup>−1</sup> (mainly due to N-H bending vibration mode of the amide II band), indicative of amide-related compounds. In contrast, these compounds are absent in C0050. Notably, N isotopic analysis reveals that these amides in C0052 are depleted in <sup>15</sup>N (<i>δ</i><sup>15</sup>N ≃ −200‰), confirming their indigenous origin, while carbon (C) and hydrogen (H) isotopic compositions are indistinguishable from terrestrial values within errors. The amides detected in C0052 could have formed through hydrothermal alteration from carboxylic acids and amines precursors on Ryugu's parent planetesimal. Alternatively, they could have originated from the irradiation of <sup>15</sup>N-depleted N-bearing ice by ultraviolet light or galactic cosmic rays, either at the surface of the asteroid in the outer Solar System or on the mantle of interstellar dust grains in the interstellar medium. Amides delivered to early Earth by primitive small bodies such as asteroid Ryugu may have contributed to the prebiotic chemistry.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 9","pages":"2033-2051"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Amides from the carbonaceous asteroid (162173) Ryugu: Nanoscale spectral and isotopic characterizations\",\"authors\":\"L. G. Vacher, V. T. H. Phan, L. Bonal, M. Iskakova, O. Poch, P. Beck, E. Quirico, R. C. Ogliore\",\"doi\":\"10.1111/maps.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>C-type asteroids, such as asteroid (162173) Ryugu, may have played a key role in delivering light elements to early Earth. Nitrogen (N)-bearing molecules have been chemically identified in some Ryugu grains, and based on the faint 3.06 μm absorption band observed by the hyperspectral microscope MicrOmega, NH-bearing compounds seem to be spread at the global scale in the collection. However, the chemical forms of these NH-bearing compounds—whether organic molecules, ammonium (NH<sub>4</sub><sup>+</sup>) salts, NH<sub>4</sub><sup>+</sup>- or NH-organics-bearing phyllosilicates, or other forms—remain to be better understood. In this study, we report the characterization of two Ryugu particles (C0050 and C0052) using infrared spectroscopy at millimeter, micrometer, and nanometer scales, along with NanoSIMS techniques to constrain the nature and origin of NH-bearing components in the Ryugu asteroid. Our findings show that Ryugu's C0052 particle contains rare (~1 vol%), micrometer-sized NH-rich organic compounds with peaks at 1660 cm<sup>−1</sup> (mainly due to C=O stretching of the amide I band) and 1550 cm<sup>−1</sup> (mainly due to N-H bending vibration mode of the amide II band), indicative of amide-related compounds. In contrast, these compounds are absent in C0050. Notably, N isotopic analysis reveals that these amides in C0052 are depleted in <sup>15</sup>N (<i>δ</i><sup>15</sup>N ≃ −200‰), confirming their indigenous origin, while carbon (C) and hydrogen (H) isotopic compositions are indistinguishable from terrestrial values within errors. The amides detected in C0052 could have formed through hydrothermal alteration from carboxylic acids and amines precursors on Ryugu's parent planetesimal. Alternatively, they could have originated from the irradiation of <sup>15</sup>N-depleted N-bearing ice by ultraviolet light or galactic cosmic rays, either at the surface of the asteroid in the outer Solar System or on the mantle of interstellar dust grains in the interstellar medium. Amides delivered to early Earth by primitive small bodies such as asteroid Ryugu may have contributed to the prebiotic chemistry.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"60 9\",\"pages\":\"2033-2051\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.70019\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.70019","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Amides from the carbonaceous asteroid (162173) Ryugu: Nanoscale spectral and isotopic characterizations
C-type asteroids, such as asteroid (162173) Ryugu, may have played a key role in delivering light elements to early Earth. Nitrogen (N)-bearing molecules have been chemically identified in some Ryugu grains, and based on the faint 3.06 μm absorption band observed by the hyperspectral microscope MicrOmega, NH-bearing compounds seem to be spread at the global scale in the collection. However, the chemical forms of these NH-bearing compounds—whether organic molecules, ammonium (NH4+) salts, NH4+- or NH-organics-bearing phyllosilicates, or other forms—remain to be better understood. In this study, we report the characterization of two Ryugu particles (C0050 and C0052) using infrared spectroscopy at millimeter, micrometer, and nanometer scales, along with NanoSIMS techniques to constrain the nature and origin of NH-bearing components in the Ryugu asteroid. Our findings show that Ryugu's C0052 particle contains rare (~1 vol%), micrometer-sized NH-rich organic compounds with peaks at 1660 cm−1 (mainly due to C=O stretching of the amide I band) and 1550 cm−1 (mainly due to N-H bending vibration mode of the amide II band), indicative of amide-related compounds. In contrast, these compounds are absent in C0050. Notably, N isotopic analysis reveals that these amides in C0052 are depleted in 15N (δ15N ≃ −200‰), confirming their indigenous origin, while carbon (C) and hydrogen (H) isotopic compositions are indistinguishable from terrestrial values within errors. The amides detected in C0052 could have formed through hydrothermal alteration from carboxylic acids and amines precursors on Ryugu's parent planetesimal. Alternatively, they could have originated from the irradiation of 15N-depleted N-bearing ice by ultraviolet light or galactic cosmic rays, either at the surface of the asteroid in the outer Solar System or on the mantle of interstellar dust grains in the interstellar medium. Amides delivered to early Earth by primitive small bodies such as asteroid Ryugu may have contributed to the prebiotic chemistry.
期刊介绍:
First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.