基于融合神经网络的智能网络安全异常检测

IF 0.8 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Chuanhao Zhang, Xiaohan Tu, Xiaofeng Lin, Yike Zhang, Zhengyang Hua
{"title":"基于融合神经网络的智能网络安全异常检测","authors":"Chuanhao Zhang,&nbsp;Xiaohan Tu,&nbsp;Xiaofeng Lin,&nbsp;Yike Zhang,&nbsp;Zhengyang Hua","doi":"10.1049/ell2.70429","DOIUrl":null,"url":null,"abstract":"<p>Network security anomaly detection constitutes a critical defense mechanism in contemporary cybersecurity frameworks. We present a fusion CNN-RNN (convolutional neural network-recurrent neural network) model integrating spatial pattern recognition with temporal modelling for network anomaly detection, employing three-branch architecture processing 41 attributes with regularisation for severe imbalance (U2R <span></span><math>\n <semantics>\n <mrow>\n <mo>&lt;</mo>\n <mspace></mspace>\n </mrow>\n <annotation>$ &lt;\\nobreakspace $</annotation>\n </semantics></math>0.1%). Comprehensive validation on the NSL-KDD benchmark dataset establishes that our fusion paradigm outperforms existing machine learning approaches in both dual-class and quintuple-class classification challenges, achieving performance improvements of 11.5% and 29.8%, respectively.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70429","citationCount":"0","resultStr":"{\"title\":\"An Advanced Fusion Neural Network Paradigm for Intelligent Cyber Security Anomaly Detection\",\"authors\":\"Chuanhao Zhang,&nbsp;Xiaohan Tu,&nbsp;Xiaofeng Lin,&nbsp;Yike Zhang,&nbsp;Zhengyang Hua\",\"doi\":\"10.1049/ell2.70429\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Network security anomaly detection constitutes a critical defense mechanism in contemporary cybersecurity frameworks. We present a fusion CNN-RNN (convolutional neural network-recurrent neural network) model integrating spatial pattern recognition with temporal modelling for network anomaly detection, employing three-branch architecture processing 41 attributes with regularisation for severe imbalance (U2R <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>&lt;</mo>\\n <mspace></mspace>\\n </mrow>\\n <annotation>$ &lt;\\\\nobreakspace $</annotation>\\n </semantics></math>0.1%). Comprehensive validation on the NSL-KDD benchmark dataset establishes that our fusion paradigm outperforms existing machine learning approaches in both dual-class and quintuple-class classification challenges, achieving performance improvements of 11.5% and 29.8%, respectively.</p>\",\"PeriodicalId\":11556,\"journal\":{\"name\":\"Electronics Letters\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70429\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ell2.70429\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ell2.70429","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

网络安全异常检测是当代网络安全框架中重要的防御机制。我们提出了一种融合CNN-RNN(卷积神经网络-递归神经网络)模型,将空间模式识别与网络异常检测的时间建模相结合,采用三分支架构处理41个属性,并对严重不平衡(U2R < $ <\nobreakspace $ 0.1%)进行正则化。在NSL-KDD基准数据集上的综合验证表明,我们的融合范式在双类和五类分类挑战中都优于现有的机器学习方法,分别实现了11.5%和29.8%的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An Advanced Fusion Neural Network Paradigm for Intelligent Cyber Security Anomaly Detection

An Advanced Fusion Neural Network Paradigm for Intelligent Cyber Security Anomaly Detection

An Advanced Fusion Neural Network Paradigm for Intelligent Cyber Security Anomaly Detection

An Advanced Fusion Neural Network Paradigm for Intelligent Cyber Security Anomaly Detection

An Advanced Fusion Neural Network Paradigm for Intelligent Cyber Security Anomaly Detection

Network security anomaly detection constitutes a critical defense mechanism in contemporary cybersecurity frameworks. We present a fusion CNN-RNN (convolutional neural network-recurrent neural network) model integrating spatial pattern recognition with temporal modelling for network anomaly detection, employing three-branch architecture processing 41 attributes with regularisation for severe imbalance (U2R < $ <\nobreakspace $ 0.1%). Comprehensive validation on the NSL-KDD benchmark dataset establishes that our fusion paradigm outperforms existing machine learning approaches in both dual-class and quintuple-class classification challenges, achieving performance improvements of 11.5% and 29.8%, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronics Letters
Electronics Letters 工程技术-工程:电子与电气
CiteScore
2.70
自引率
0.00%
发文量
268
审稿时长
3.6 months
期刊介绍: Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews. Scope As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below. Antennas and Propagation Biomedical and Bioinspired Technologies, Signal Processing and Applications Control Engineering Electromagnetism: Theory, Materials and Devices Electronic Circuits and Systems Image, Video and Vision Processing and Applications Information, Computing and Communications Instrumentation and Measurement Microwave Technology Optical Communications Photonics and Opto-Electronics Power Electronics, Energy and Sustainability Radar, Sonar and Navigation Semiconductor Technology Signal Processing MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信