基于ANN和rsm的含外加磁场三元混合纳米流体自然对流八角形腔的比较

IF 2 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Rupa Kundu, Saiful Islam, Ritu Aktary, Sweety Khatun, Md. Sirajul Islam
{"title":"基于ANN和rsm的含外加磁场三元混合纳米流体自然对流八角形腔的比较","authors":"Rupa Kundu,&nbsp;Saiful Islam,&nbsp;Ritu Aktary,&nbsp;Sweety Khatun,&nbsp;Md. Sirajul Islam","doi":"10.1002/eng2.70348","DOIUrl":null,"url":null,"abstract":"<p>The primary aim of this work is to explore how an external magnetic field affects the natural convective fluid and thermal transmission in an octagonal cavity filled with a Cu-CuO-Al<sub>2</sub>O<sub>3</sub>-H<sub>2</sub>O ternary hybrid nanofluid because of the numerous practical uses of natural convection. The cavity's center is occupied by a circular uniform heat source (T<sub>h</sub>), and the vertical walls act as a heat sink (T<sub>c</sub>). Thermal insulation is installed in the remaining walls. The finite element method (FEM) is used to numerically simulate the governing equations. Artificial neural network (ANN) is utilized for data prediction, and another statistical technique called response surface methodology (RSM) is also applied. The results are expressed in terms of average Nusselt number (Nu<sub>av</sub>), isotherms, streamlines, and velocity profiles for different values of Rayleigh number (<i>Ra</i>), Hartmann number (<i>Ha</i>), and nanoparticle volume fraction (<i>ϕ</i>). RSM is also used to make a proper correlation between <i>Ra</i>, <i>Ha</i>, and <i>ϕ</i> with the response Nu<sub>av</sub>. The findings of examining the rate of sensitivity show that although <i>Ha</i> shows the opposite tendency, <i>Ra</i> increases thermal performance. Moreover, adding solid particles of Cu, CuO, and Al<sub>2</sub>O<sub>3</sub> to H<sub>2</sub>O rather than the base fluid increases the rate of heat transfer by up to 10.73%. A strong basis for thermal system optimization using a ternary hybrid nanofluid is provided by the combination of numerical, statistical, and ANN methods for the investigation and guess of heat passage methods.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 9","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70348","citationCount":"0","resultStr":"{\"title\":\"ANN and RSM-Based Comparison on a Natural Convective Octagonal Cavity Containing Ternary Hybrid Nanofluid Including External Magnetic Field\",\"authors\":\"Rupa Kundu,&nbsp;Saiful Islam,&nbsp;Ritu Aktary,&nbsp;Sweety Khatun,&nbsp;Md. Sirajul Islam\",\"doi\":\"10.1002/eng2.70348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The primary aim of this work is to explore how an external magnetic field affects the natural convective fluid and thermal transmission in an octagonal cavity filled with a Cu-CuO-Al<sub>2</sub>O<sub>3</sub>-H<sub>2</sub>O ternary hybrid nanofluid because of the numerous practical uses of natural convection. The cavity's center is occupied by a circular uniform heat source (T<sub>h</sub>), and the vertical walls act as a heat sink (T<sub>c</sub>). Thermal insulation is installed in the remaining walls. The finite element method (FEM) is used to numerically simulate the governing equations. Artificial neural network (ANN) is utilized for data prediction, and another statistical technique called response surface methodology (RSM) is also applied. The results are expressed in terms of average Nusselt number (Nu<sub>av</sub>), isotherms, streamlines, and velocity profiles for different values of Rayleigh number (<i>Ra</i>), Hartmann number (<i>Ha</i>), and nanoparticle volume fraction (<i>ϕ</i>). RSM is also used to make a proper correlation between <i>Ra</i>, <i>Ha</i>, and <i>ϕ</i> with the response Nu<sub>av</sub>. The findings of examining the rate of sensitivity show that although <i>Ha</i> shows the opposite tendency, <i>Ra</i> increases thermal performance. Moreover, adding solid particles of Cu, CuO, and Al<sub>2</sub>O<sub>3</sub> to H<sub>2</sub>O rather than the base fluid increases the rate of heat transfer by up to 10.73%. A strong basis for thermal system optimization using a ternary hybrid nanofluid is provided by the combination of numerical, statistical, and ANN methods for the investigation and guess of heat passage methods.</p>\",\"PeriodicalId\":72922,\"journal\":{\"name\":\"Engineering reports : open access\",\"volume\":\"7 9\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70348\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering reports : open access\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70348\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70348","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于自然对流的许多实际应用,本工作的主要目的是探索外部磁场如何影响充满Cu-CuO-Al2O3-H2O三元混合纳米流体的八角形腔中的自然对流流体和热传递。腔体中心为圆形均匀热源(Th),垂直壁面为吸热体(Tc)。其余墙体安装保温材料。采用有限元法对控制方程进行了数值模拟。利用人工神经网络(ANN)进行数据预测,并应用了另一种统计技术——响应面法(RSM)。结果用平均努塞尔数(Nuav)、等温线、流线和速度分布来表示不同瑞利数(Ra)、哈特曼数(Ha)和纳米颗粒体积分数(ϕ)的值。RSM还用于在Ra, Ha和ϕ与响应Nuav之间建立适当的相关性。检测灵敏度的结果表明,虽然Ha表现出相反的趋势,但Ra提高了热性能。此外,在H2O中加入Cu、CuO和Al2O3的固体颗粒,而不是在基液中加入,传热率最高可达10.73%。数值、统计和人工神经网络相结合的方法为三元混合纳米流体的热系统优化提供了强有力的基础,并对热传导方法进行了研究和猜测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

ANN and RSM-Based Comparison on a Natural Convective Octagonal Cavity Containing Ternary Hybrid Nanofluid Including External Magnetic Field

ANN and RSM-Based Comparison on a Natural Convective Octagonal Cavity Containing Ternary Hybrid Nanofluid Including External Magnetic Field

The primary aim of this work is to explore how an external magnetic field affects the natural convective fluid and thermal transmission in an octagonal cavity filled with a Cu-CuO-Al2O3-H2O ternary hybrid nanofluid because of the numerous practical uses of natural convection. The cavity's center is occupied by a circular uniform heat source (Th), and the vertical walls act as a heat sink (Tc). Thermal insulation is installed in the remaining walls. The finite element method (FEM) is used to numerically simulate the governing equations. Artificial neural network (ANN) is utilized for data prediction, and another statistical technique called response surface methodology (RSM) is also applied. The results are expressed in terms of average Nusselt number (Nuav), isotherms, streamlines, and velocity profiles for different values of Rayleigh number (Ra), Hartmann number (Ha), and nanoparticle volume fraction (ϕ). RSM is also used to make a proper correlation between Ra, Ha, and ϕ with the response Nuav. The findings of examining the rate of sensitivity show that although Ha shows the opposite tendency, Ra increases thermal performance. Moreover, adding solid particles of Cu, CuO, and Al2O3 to H2O rather than the base fluid increases the rate of heat transfer by up to 10.73%. A strong basis for thermal system optimization using a ternary hybrid nanofluid is provided by the combination of numerical, statistical, and ANN methods for the investigation and guess of heat passage methods.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信