{"title":"针对Pkp2缺失的基因治疗可减轻心脏纤维化:来自Pkp2敲除大鼠单细胞转录组学的见解","authors":"Xinyue Ding, Hui Zhang, Xuan Zhao, Nengpin Yin, Shuo Han, Xiao Jin, Tingting Li, Lina Xing, Zhen Qi, Yanan Zhu, Xin Wang, Zongjun Liu","doi":"10.1002/mco2.70392","DOIUrl":null,"url":null,"abstract":"<p>Heart failure (HF), characterized by maladaptive cardiac fibrosis and progressive functional deterioration, remains a therapeutic challenge. In this study, we established a cardiac organoid HF model derived from human-induced pluripotent stem cells (hiPSCs) and observed a significant downregulation of the desmosomal protein plakophilin-2 (PKP2) in this model. Reduced PKP2 expression was detected in both HF rat and mouse. Subsequent in vivo studies on <i>Pkp2-</i>knockout (<i>Pkp2</i>-KO) rats demonstrated that adeno-associated virus serotype 9 (AAV9)-mediated restoration of PKP2 not only restored cardiac PKP2 expression but also attenuated the progression of fibrosis. Administration of AAV9-PKP2 could also inhibit myocardial fibrosis and slow down disease progression in HF mouse. Single-cell RNA sequencing analysis in rats revealed enriched pathological profibrotic cardiac fibroblasts (CFs) in PKP2-deficient myocardium. Mechanistically, AAV9-PKP2 administration induced the phenotypic conversion of activated CFs into quiescent antifibrotic states. Integrated bioinformatics identified that protein tyrosine phosphatase receptor type C (<i>Ptprc</i>) was a pivotal regulator orchestrating this cellular reprogramming. Our findings thus unveil PKP2 as a master regulator of fibroblast activation and propose AAV9-PKP2 gene therapy as a promising novel therapeutic strategy targeting pathological fibrosis in HF.</p>","PeriodicalId":94133,"journal":{"name":"MedComm","volume":"6 10","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70392","citationCount":"0","resultStr":"{\"title\":\"Gene Therapy Targeting Pkp2 Deficiency Attenuates Cardiac Fibrosis: Insights From Single-Cell Transcriptomics in Pkp2-Knockout Rats\",\"authors\":\"Xinyue Ding, Hui Zhang, Xuan Zhao, Nengpin Yin, Shuo Han, Xiao Jin, Tingting Li, Lina Xing, Zhen Qi, Yanan Zhu, Xin Wang, Zongjun Liu\",\"doi\":\"10.1002/mco2.70392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Heart failure (HF), characterized by maladaptive cardiac fibrosis and progressive functional deterioration, remains a therapeutic challenge. In this study, we established a cardiac organoid HF model derived from human-induced pluripotent stem cells (hiPSCs) and observed a significant downregulation of the desmosomal protein plakophilin-2 (PKP2) in this model. Reduced PKP2 expression was detected in both HF rat and mouse. Subsequent in vivo studies on <i>Pkp2-</i>knockout (<i>Pkp2</i>-KO) rats demonstrated that adeno-associated virus serotype 9 (AAV9)-mediated restoration of PKP2 not only restored cardiac PKP2 expression but also attenuated the progression of fibrosis. Administration of AAV9-PKP2 could also inhibit myocardial fibrosis and slow down disease progression in HF mouse. Single-cell RNA sequencing analysis in rats revealed enriched pathological profibrotic cardiac fibroblasts (CFs) in PKP2-deficient myocardium. Mechanistically, AAV9-PKP2 administration induced the phenotypic conversion of activated CFs into quiescent antifibrotic states. Integrated bioinformatics identified that protein tyrosine phosphatase receptor type C (<i>Ptprc</i>) was a pivotal regulator orchestrating this cellular reprogramming. Our findings thus unveil PKP2 as a master regulator of fibroblast activation and propose AAV9-PKP2 gene therapy as a promising novel therapeutic strategy targeting pathological fibrosis in HF.</p>\",\"PeriodicalId\":94133,\"journal\":{\"name\":\"MedComm\",\"volume\":\"6 10\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mco2.70392\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"MedComm\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"MedComm","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mco2.70392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Gene Therapy Targeting Pkp2 Deficiency Attenuates Cardiac Fibrosis: Insights From Single-Cell Transcriptomics in Pkp2-Knockout Rats
Heart failure (HF), characterized by maladaptive cardiac fibrosis and progressive functional deterioration, remains a therapeutic challenge. In this study, we established a cardiac organoid HF model derived from human-induced pluripotent stem cells (hiPSCs) and observed a significant downregulation of the desmosomal protein plakophilin-2 (PKP2) in this model. Reduced PKP2 expression was detected in both HF rat and mouse. Subsequent in vivo studies on Pkp2-knockout (Pkp2-KO) rats demonstrated that adeno-associated virus serotype 9 (AAV9)-mediated restoration of PKP2 not only restored cardiac PKP2 expression but also attenuated the progression of fibrosis. Administration of AAV9-PKP2 could also inhibit myocardial fibrosis and slow down disease progression in HF mouse. Single-cell RNA sequencing analysis in rats revealed enriched pathological profibrotic cardiac fibroblasts (CFs) in PKP2-deficient myocardium. Mechanistically, AAV9-PKP2 administration induced the phenotypic conversion of activated CFs into quiescent antifibrotic states. Integrated bioinformatics identified that protein tyrosine phosphatase receptor type C (Ptprc) was a pivotal regulator orchestrating this cellular reprogramming. Our findings thus unveil PKP2 as a master regulator of fibroblast activation and propose AAV9-PKP2 gene therapy as a promising novel therapeutic strategy targeting pathological fibrosis in HF.