日晷:一种根据阴影方向推断图像采集时间的方法

IF 2.7 3区 地球科学 Q2 GEOGRAPHY, PHYSICAL
Inhyeok Bae, Carl J. Legleiter, Elowyn M. Yager
{"title":"日晷:一种根据阴影方向推断图像采集时间的方法","authors":"Inhyeok Bae,&nbsp;Carl J. Legleiter,&nbsp;Elowyn M. Yager","doi":"10.1002/esp.70157","DOIUrl":null,"url":null,"abstract":"<p>Aerial photography and satellite imagery can be used to characterize landscape change over time and help to understand how these changes are related to climate and hydrology. Publicly available optical imagery from sources such as the United States National Agricultural Imagery Program (NAIP) is particularly valuable in this context due to its high temporal and spatial resolution. However, the exact time an image was acquired is often unknown, which complicates, if not precludes, linking images with other types of high temporal resolution data, such as streamflow records. In this letter, we propose a ‘sundial method’ to infer image acquisition time from shadow orientation. This approach involves measuring the direction of a shadow on the image and using solar geometry calculated for the known image date and location to infer the former sun position. Time estimates for 16 Worldview satellite and six NAIP aerial images based on 407 independent measurements of shadow orientation demonstrate the sundial method had an error of 2.1 ± 3.4 min, indicating that image acquisition times can be inferred with a high degree of accuracy and precision. Sensitivity analyses confirm the robustness of the method across different object types, shadow lengths, and solar zenith angles, while also providing practical guidelines regarding the number of measurements required and errors associated with uncertainty in the image date.</p>","PeriodicalId":11408,"journal":{"name":"Earth Surface Processes and Landforms","volume":"50 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sundial: A method for inferring image acquisition time from shadow orientation\",\"authors\":\"Inhyeok Bae,&nbsp;Carl J. Legleiter,&nbsp;Elowyn M. Yager\",\"doi\":\"10.1002/esp.70157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aerial photography and satellite imagery can be used to characterize landscape change over time and help to understand how these changes are related to climate and hydrology. Publicly available optical imagery from sources such as the United States National Agricultural Imagery Program (NAIP) is particularly valuable in this context due to its high temporal and spatial resolution. However, the exact time an image was acquired is often unknown, which complicates, if not precludes, linking images with other types of high temporal resolution data, such as streamflow records. In this letter, we propose a ‘sundial method’ to infer image acquisition time from shadow orientation. This approach involves measuring the direction of a shadow on the image and using solar geometry calculated for the known image date and location to infer the former sun position. Time estimates for 16 Worldview satellite and six NAIP aerial images based on 407 independent measurements of shadow orientation demonstrate the sundial method had an error of 2.1 ± 3.4 min, indicating that image acquisition times can be inferred with a high degree of accuracy and precision. Sensitivity analyses confirm the robustness of the method across different object types, shadow lengths, and solar zenith angles, while also providing practical guidelines regarding the number of measurements required and errors associated with uncertainty in the image date.</p>\",\"PeriodicalId\":11408,\"journal\":{\"name\":\"Earth Surface Processes and Landforms\",\"volume\":\"50 12\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth Surface Processes and Landforms\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/esp.70157\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOGRAPHY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth Surface Processes and Landforms","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/esp.70157","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

航空摄影和卫星图像可以用来描述景观随时间变化的特征,并有助于了解这些变化与气候和水文的关系。来自诸如美国国家农业图像计划(NAIP)的公开光学图像由于其高时间和空间分辨率在这方面特别有价值。然而,获取图像的确切时间通常是未知的,这使得将图像与其他类型的高时间分辨率数据(如流量记录)联系起来变得复杂。在这封信中,我们提出了一种“日晷法”,从阴影方向推断图像采集时间。这种方法包括测量图像上阴影的方向,并使用已知图像日期和位置计算的太阳几何形状来推断以前的太阳位置。基于407个独立的阴影方位测量,对16颗Worldview卫星和6张NAIP航拍图像进行了时间估算,结果表明,日晷法的误差为2.1±3.4 min,表明该方法可以以较高的精度和精度推断图像采集时间。灵敏度分析证实了该方法在不同对象类型、阴影长度和太阳天顶角上的鲁棒性,同时还提供了有关所需测量次数和与图像日期不确定性相关的误差的实用指南。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Sundial: A method for inferring image acquisition time from shadow orientation

Sundial: A method for inferring image acquisition time from shadow orientation

Aerial photography and satellite imagery can be used to characterize landscape change over time and help to understand how these changes are related to climate and hydrology. Publicly available optical imagery from sources such as the United States National Agricultural Imagery Program (NAIP) is particularly valuable in this context due to its high temporal and spatial resolution. However, the exact time an image was acquired is often unknown, which complicates, if not precludes, linking images with other types of high temporal resolution data, such as streamflow records. In this letter, we propose a ‘sundial method’ to infer image acquisition time from shadow orientation. This approach involves measuring the direction of a shadow on the image and using solar geometry calculated for the known image date and location to infer the former sun position. Time estimates for 16 Worldview satellite and six NAIP aerial images based on 407 independent measurements of shadow orientation demonstrate the sundial method had an error of 2.1 ± 3.4 min, indicating that image acquisition times can be inferred with a high degree of accuracy and precision. Sensitivity analyses confirm the robustness of the method across different object types, shadow lengths, and solar zenith angles, while also providing practical guidelines regarding the number of measurements required and errors associated with uncertainty in the image date.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth Surface Processes and Landforms
Earth Surface Processes and Landforms 地学-地球科学综合
CiteScore
6.40
自引率
12.10%
发文量
215
审稿时长
4 months
期刊介绍: Earth Surface Processes and Landforms is an interdisciplinary international journal concerned with: the interactions between surface processes and landforms and landscapes; that lead to physical, chemical and biological changes; and which in turn create; current landscapes and the geological record of past landscapes. Its focus is core to both physical geographical and geological communities, and also the wider geosciences
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信