{"title":"pt基非均相催化剂上H2活化及吸附氢的研究进展","authors":"Qiangqiang Wu, Weixiang Xiong, Guangxing Yang","doi":"10.1002/cctc.202500902","DOIUrl":null,"url":null,"abstract":"<p>H<sub>2</sub> activation on heterogeneous catalysts is a fundamental step in numerous chemical processes, with the nature of adsorbed hydrogen (H) species playing a critical role in catalytic performance. In this review, we systematically categorize the formation of different H species based on the coordination environment of active metal sites, distinguishing between homolytic and heterolytic H<sub>2</sub> dissociation pathways. Focusing on Pt-based heterogeneous catalysts, we provide atomic-scale insights into adsorbed H species and Pt metal. The experimental detection of Pt─H adducts is then critically evaluated via three key spectroscopic techniques: infrared (IR) spectroscopy, inelastic neutron scattering (INS) spectroscopy, and X-ray absorption spectroscopy (XAS), highlighting recent advancements in spectral interpretation. Complementary theoretical studies that can provide binding details of Pt─H bonds are also discussed to elucidate Pt─H adsorption configurations, binding energies, dynamic properties, and coverage-dependent behavior. Finally, we summarize the strengths and limitations of each characterization method and provide perspectives on future research directions for understanding adsorbed H species in catalysis. This review aims to bridge the gap between experimental observations and theoretical modeling, offering a comprehensive foundation for designing more efficient catalysts in hydrogen-involved reactions.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 18","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"H2 Activation and Adsorbed H Species on Pt-Based Heterogeneous Catalysts: Fundamentals and Advances\",\"authors\":\"Qiangqiang Wu, Weixiang Xiong, Guangxing Yang\",\"doi\":\"10.1002/cctc.202500902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>H<sub>2</sub> activation on heterogeneous catalysts is a fundamental step in numerous chemical processes, with the nature of adsorbed hydrogen (H) species playing a critical role in catalytic performance. In this review, we systematically categorize the formation of different H species based on the coordination environment of active metal sites, distinguishing between homolytic and heterolytic H<sub>2</sub> dissociation pathways. Focusing on Pt-based heterogeneous catalysts, we provide atomic-scale insights into adsorbed H species and Pt metal. The experimental detection of Pt─H adducts is then critically evaluated via three key spectroscopic techniques: infrared (IR) spectroscopy, inelastic neutron scattering (INS) spectroscopy, and X-ray absorption spectroscopy (XAS), highlighting recent advancements in spectral interpretation. Complementary theoretical studies that can provide binding details of Pt─H bonds are also discussed to elucidate Pt─H adsorption configurations, binding energies, dynamic properties, and coverage-dependent behavior. Finally, we summarize the strengths and limitations of each characterization method and provide perspectives on future research directions for understanding adsorbed H species in catalysis. This review aims to bridge the gap between experimental observations and theoretical modeling, offering a comprehensive foundation for designing more efficient catalysts in hydrogen-involved reactions.</p>\",\"PeriodicalId\":141,\"journal\":{\"name\":\"ChemCatChem\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemCatChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500902\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500902","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
H2 Activation and Adsorbed H Species on Pt-Based Heterogeneous Catalysts: Fundamentals and Advances
H2 activation on heterogeneous catalysts is a fundamental step in numerous chemical processes, with the nature of adsorbed hydrogen (H) species playing a critical role in catalytic performance. In this review, we systematically categorize the formation of different H species based on the coordination environment of active metal sites, distinguishing between homolytic and heterolytic H2 dissociation pathways. Focusing on Pt-based heterogeneous catalysts, we provide atomic-scale insights into adsorbed H species and Pt metal. The experimental detection of Pt─H adducts is then critically evaluated via three key spectroscopic techniques: infrared (IR) spectroscopy, inelastic neutron scattering (INS) spectroscopy, and X-ray absorption spectroscopy (XAS), highlighting recent advancements in spectral interpretation. Complementary theoretical studies that can provide binding details of Pt─H bonds are also discussed to elucidate Pt─H adsorption configurations, binding energies, dynamic properties, and coverage-dependent behavior. Finally, we summarize the strengths and limitations of each characterization method and provide perspectives on future research directions for understanding adsorbed H species in catalysis. This review aims to bridge the gap between experimental observations and theoretical modeling, offering a comprehensive foundation for designing more efficient catalysts in hydrogen-involved reactions.
期刊介绍:
With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.