珊瑚礁温度变化与网格化海表温度的对比——长与短

IF 3 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
A. M. Dolman, T. Laepple
{"title":"珊瑚礁温度变化与网格化海表温度的对比——长与短","authors":"A. M. Dolman,&nbsp;T. Laepple","doi":"10.1029/2025GC012351","DOIUrl":null,"url":null,"abstract":"<p>Coral-based temperature reconstructions and gridded sea-surface-temperature (gSST) data sets both provide valuable insights into tropical climate variability. However, coral records often exhibit greater interannual to decadal variability than is observed in gSST products or Earth System Models (ESMs). This discrepancy is often attributed to large differences in spatial scale: coral records reflect conditions over areas of only a few square centimeters, while gSST and ESM grid cells span 1 to 10,000 km<sup>2</sup>. In situ temperature loggers on coral reefs allow us to isolate the effects of spatial scale from other non-climatic influences on coral temperature records. Many logger studies focus on hourly to monthly timescales, temperature biases, and whether gSST can capture temperature extremes associated with coral bleaching and mortality; however, paleoclimate reconstructions provide an understanding of variability on longer timescales. Here, we compare the power spectral density and coherence of logger temperature and gSST on daily to decadal timescales using logger data from 42 sites on the Great Barrier Reef. We find that temperature variations recorded by loggers on reefs are well correlated with and have the same amplitude as gSST variations at decadal to annual timescales. Therefore, the excess decadal variability commonly seen in coral-based temperature reconstructions cannot be attributed to a general effect of spatial scale.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012351","citationCount":"0","resultStr":"{\"title\":\"Temperature Variability on Coral Reefs Versus Gridded SST – The Long and the Short of It\",\"authors\":\"A. M. Dolman,&nbsp;T. Laepple\",\"doi\":\"10.1029/2025GC012351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Coral-based temperature reconstructions and gridded sea-surface-temperature (gSST) data sets both provide valuable insights into tropical climate variability. However, coral records often exhibit greater interannual to decadal variability than is observed in gSST products or Earth System Models (ESMs). This discrepancy is often attributed to large differences in spatial scale: coral records reflect conditions over areas of only a few square centimeters, while gSST and ESM grid cells span 1 to 10,000 km<sup>2</sup>. In situ temperature loggers on coral reefs allow us to isolate the effects of spatial scale from other non-climatic influences on coral temperature records. Many logger studies focus on hourly to monthly timescales, temperature biases, and whether gSST can capture temperature extremes associated with coral bleaching and mortality; however, paleoclimate reconstructions provide an understanding of variability on longer timescales. Here, we compare the power spectral density and coherence of logger temperature and gSST on daily to decadal timescales using logger data from 42 sites on the Great Barrier Reef. We find that temperature variations recorded by loggers on reefs are well correlated with and have the same amplitude as gSST variations at decadal to annual timescales. Therefore, the excess decadal variability commonly seen in coral-based temperature reconstructions cannot be attributed to a general effect of spatial scale.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012351\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GC012351\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GC012351","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

基于珊瑚的温度重建和网格化海面温度(gSST)数据集都为热带气候变化提供了有价值的见解。然而,与gSST产品或地球系统模式(ESMs)相比,珊瑚记录往往表现出更大的年际至年代际变化。这种差异通常归因于空间尺度上的巨大差异:珊瑚记录反映的条件仅为几平方厘米,而gSST和ESM网格单元跨越1至10,000平方公里。珊瑚礁的原位温度记录器使我们能够将空间尺度对珊瑚温度记录的影响与其他非气候影响隔离开来。许多记录器研究关注每小时到每月的时间尺度、温度偏差,以及gSST是否能捕捉到与珊瑚白化和死亡相关的极端温度;然而,古气候重建提供了对更长时间尺度上的变率的理解。在这里,我们利用大堡礁42个地点的记录器数据,比较了记录器温度和gSST在日和年代际时间尺度上的功率谱密度和相干性。我们发现,在年代际到年代际的时间尺度上,珊瑚礁上记录的温度变化与gSST变化具有良好的相关性和相同的振幅。因此,在基于珊瑚的温度重建中常见的过度年代际变率不能归因于空间尺度的一般效应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Temperature Variability on Coral Reefs Versus Gridded SST – The Long and the Short of It

Temperature Variability on Coral Reefs Versus Gridded SST – The Long and the Short of It

Temperature Variability on Coral Reefs Versus Gridded SST – The Long and the Short of It

Temperature Variability on Coral Reefs Versus Gridded SST – The Long and the Short of It

Temperature Variability on Coral Reefs Versus Gridded SST – The Long and the Short of It

Coral-based temperature reconstructions and gridded sea-surface-temperature (gSST) data sets both provide valuable insights into tropical climate variability. However, coral records often exhibit greater interannual to decadal variability than is observed in gSST products or Earth System Models (ESMs). This discrepancy is often attributed to large differences in spatial scale: coral records reflect conditions over areas of only a few square centimeters, while gSST and ESM grid cells span 1 to 10,000 km2. In situ temperature loggers on coral reefs allow us to isolate the effects of spatial scale from other non-climatic influences on coral temperature records. Many logger studies focus on hourly to monthly timescales, temperature biases, and whether gSST can capture temperature extremes associated with coral bleaching and mortality; however, paleoclimate reconstructions provide an understanding of variability on longer timescales. Here, we compare the power spectral density and coherence of logger temperature and gSST on daily to decadal timescales using logger data from 42 sites on the Great Barrier Reef. We find that temperature variations recorded by loggers on reefs are well correlated with and have the same amplitude as gSST variations at decadal to annual timescales. Therefore, the excess decadal variability commonly seen in coral-based temperature reconstructions cannot be attributed to a general effect of spatial scale.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信