基于多类分类的复杂电磁环境下雷达信号去交织

IF 1.5 4区 管理学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Min Xie, Jie Huang, Chuang Zhao, De-Xiu Hu
{"title":"基于多类分类的复杂电磁环境下雷达信号去交织","authors":"Min Xie,&nbsp;Jie Huang,&nbsp;Chuang Zhao,&nbsp;De-Xiu Hu","doi":"10.1049/rsn2.70072","DOIUrl":null,"url":null,"abstract":"<p>Radar signal deinterleaving is challenging due to dense pulse interleaving and diverse PRI modulations. This work reframes it as a multi-class classification problem, treating each emitter as a distinct class. Existing methods suffer from error accumulation in sequential processing or fail to integrate parallel classifier outputs effectively. To address these flaws, we propose OvR-C-MC, a complete one-vs.-rest (OvR) decomposition framework. Key innovations include (1) true multi-class decomposition: parallel binary classifiers maintain the OvR paradigm's theoretical guarantees, avoiding error propagation in sequential binary classifiers. We integrate classifier outputs with a prioritisation mechanism to resolve conflicts, ensuring a more robust and accurate classification process than existing methods. (2) HMC-based OvR classifier: hidden Markov chains (HMCs) form the basis of each binary classifier, enabling support for any regularised PRI modulation types through state transition property and providing a more comprehensive solution. Experimental results demonstrate that the proposed method significantly outperformed existing approaches, particularly in dense interleaved scenarios, whereas maintaining compatibility with diverse PRI modulation types. Thus, the proposed systematic perspective for radar signal deinterleaving provides robust support for radar signal reconnaissance in complex electromagnetic environments.</p>","PeriodicalId":50377,"journal":{"name":"Iet Radar Sonar and Navigation","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70072","citationCount":"0","resultStr":"{\"title\":\"Radar Signal Deinterleaving in Complex Electromagnetic Environments by a Multi-Class Classification Perspective\",\"authors\":\"Min Xie,&nbsp;Jie Huang,&nbsp;Chuang Zhao,&nbsp;De-Xiu Hu\",\"doi\":\"10.1049/rsn2.70072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Radar signal deinterleaving is challenging due to dense pulse interleaving and diverse PRI modulations. This work reframes it as a multi-class classification problem, treating each emitter as a distinct class. Existing methods suffer from error accumulation in sequential processing or fail to integrate parallel classifier outputs effectively. To address these flaws, we propose OvR-C-MC, a complete one-vs.-rest (OvR) decomposition framework. Key innovations include (1) true multi-class decomposition: parallel binary classifiers maintain the OvR paradigm's theoretical guarantees, avoiding error propagation in sequential binary classifiers. We integrate classifier outputs with a prioritisation mechanism to resolve conflicts, ensuring a more robust and accurate classification process than existing methods. (2) HMC-based OvR classifier: hidden Markov chains (HMCs) form the basis of each binary classifier, enabling support for any regularised PRI modulation types through state transition property and providing a more comprehensive solution. Experimental results demonstrate that the proposed method significantly outperformed existing approaches, particularly in dense interleaved scenarios, whereas maintaining compatibility with diverse PRI modulation types. Thus, the proposed systematic perspective for radar signal deinterleaving provides robust support for radar signal reconnaissance in complex electromagnetic environments.</p>\",\"PeriodicalId\":50377,\"journal\":{\"name\":\"Iet Radar Sonar and Navigation\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/rsn2.70072\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Radar Sonar and Navigation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70072\",\"RegionNum\":4,\"RegionCategory\":\"管理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Radar Sonar and Navigation","FirstCategoryId":"94","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/rsn2.70072","RegionNum":4,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

雷达信号去交错是一项具有挑战性的工作,主要是由于密集的脉冲交错和不同的PRI调制。这项工作将其重新定义为一个多类分类问题,将每个发射器视为一个不同的类。现有方法在序列处理中存在误差累积或不能有效整合并行分类器输出的问题。为了解决这些缺陷,我们提出了OvR-C-MC,一个完整的一对一。-rest (over)分解框架。关键创新包括(1)真正的多类分解:并行二元分类器保持了OvR范式的理论保证,避免了顺序二元分类器中的错误传播。我们将分类器输出与优先级机制集成以解决冲突,确保比现有方法更健壮和准确的分类过程。(2)基于hmc的OvR分类器:隐藏马尔可夫链(hidden Markov chains, hmc)构成了每个二元分类器的基础,通过状态转换特性支持任何正则化的PRI调制类型,提供了更全面的解决方案。实验结果表明,该方法显著优于现有方法,特别是在密集交错场景下,同时保持了对多种PRI调制类型的兼容性。因此,所提出的雷达信号去交织系统视角为复杂电磁环境下的雷达信号侦察提供了强有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Radar Signal Deinterleaving in Complex Electromagnetic Environments by a Multi-Class Classification Perspective

Radar Signal Deinterleaving in Complex Electromagnetic Environments by a Multi-Class Classification Perspective

Radar Signal Deinterleaving in Complex Electromagnetic Environments by a Multi-Class Classification Perspective

Radar Signal Deinterleaving in Complex Electromagnetic Environments by a Multi-Class Classification Perspective

Radar Signal Deinterleaving in Complex Electromagnetic Environments by a Multi-Class Classification Perspective

Radar Signal Deinterleaving in Complex Electromagnetic Environments by a Multi-Class Classification Perspective

Radar signal deinterleaving is challenging due to dense pulse interleaving and diverse PRI modulations. This work reframes it as a multi-class classification problem, treating each emitter as a distinct class. Existing methods suffer from error accumulation in sequential processing or fail to integrate parallel classifier outputs effectively. To address these flaws, we propose OvR-C-MC, a complete one-vs.-rest (OvR) decomposition framework. Key innovations include (1) true multi-class decomposition: parallel binary classifiers maintain the OvR paradigm's theoretical guarantees, avoiding error propagation in sequential binary classifiers. We integrate classifier outputs with a prioritisation mechanism to resolve conflicts, ensuring a more robust and accurate classification process than existing methods. (2) HMC-based OvR classifier: hidden Markov chains (HMCs) form the basis of each binary classifier, enabling support for any regularised PRI modulation types through state transition property and providing a more comprehensive solution. Experimental results demonstrate that the proposed method significantly outperformed existing approaches, particularly in dense interleaved scenarios, whereas maintaining compatibility with diverse PRI modulation types. Thus, the proposed systematic perspective for radar signal deinterleaving provides robust support for radar signal reconnaissance in complex electromagnetic environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Radar Sonar and Navigation
Iet Radar Sonar and Navigation 工程技术-电信学
CiteScore
4.10
自引率
11.80%
发文量
137
审稿时长
3.4 months
期刊介绍: IET Radar, Sonar & Navigation covers the theory and practice of systems and signals for radar, sonar, radiolocation, navigation, and surveillance purposes, in aerospace and terrestrial applications. Examples include advances in waveform design, clutter and detection, electronic warfare, adaptive array and superresolution methods, tracking algorithms, synthetic aperture, and target recognition techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信