{"title":"QMBOC- hfm:用于大规模LEO导航增强系统的增强型QMBOC","authors":"Shugan Zhang, Xinming Huang, Bofang Chen","doi":"10.1049/ell2.70398","DOIUrl":null,"url":null,"abstract":"<p>Large-scale low earth orbit (LEO) constellations can enhance traditional global navigation satellite systems (GNSS) in many ways, but the rapid increase in the number of LEO satellites also poses challenges to the anti-interference performance of navigation signals. To improve the performance of the B1C signal in the future BeiDou global navigation satellite system, this paper proposes a modulation method: it enhances the existing quadrature-multiplexed binary offset carrier (QMBOC) by using periodic binary hyperbolic frequency modulation (HFM) signals as subcarriers. The enhanced QMBOC signal (QMBOC-HFM) demonstrates superior anti-interference and positioning accuracy compared to the original QMBOC signal. The proposed QMBOC-HFM provides a potential signal design for future LEO navigation-augmented global satellite navigation systems.</p>","PeriodicalId":11556,"journal":{"name":"Electronics Letters","volume":"61 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70398","citationCount":"0","resultStr":"{\"title\":\"QMBOC-HFM: Enhanced QMBOC for Large-Scale LEO Navigation Augmentation Systems\",\"authors\":\"Shugan Zhang, Xinming Huang, Bofang Chen\",\"doi\":\"10.1049/ell2.70398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Large-scale low earth orbit (LEO) constellations can enhance traditional global navigation satellite systems (GNSS) in many ways, but the rapid increase in the number of LEO satellites also poses challenges to the anti-interference performance of navigation signals. To improve the performance of the B1C signal in the future BeiDou global navigation satellite system, this paper proposes a modulation method: it enhances the existing quadrature-multiplexed binary offset carrier (QMBOC) by using periodic binary hyperbolic frequency modulation (HFM) signals as subcarriers. The enhanced QMBOC signal (QMBOC-HFM) demonstrates superior anti-interference and positioning accuracy compared to the original QMBOC signal. The proposed QMBOC-HFM provides a potential signal design for future LEO navigation-augmented global satellite navigation systems.</p>\",\"PeriodicalId\":11556,\"journal\":{\"name\":\"Electronics Letters\",\"volume\":\"61 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/ell2.70398\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronics Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ell2.70398\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronics Letters","FirstCategoryId":"5","ListUrlMain":"https://ietresearch.onlinelibrary.wiley.com/doi/10.1049/ell2.70398","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
QMBOC-HFM: Enhanced QMBOC for Large-Scale LEO Navigation Augmentation Systems
Large-scale low earth orbit (LEO) constellations can enhance traditional global navigation satellite systems (GNSS) in many ways, but the rapid increase in the number of LEO satellites also poses challenges to the anti-interference performance of navigation signals. To improve the performance of the B1C signal in the future BeiDou global navigation satellite system, this paper proposes a modulation method: it enhances the existing quadrature-multiplexed binary offset carrier (QMBOC) by using periodic binary hyperbolic frequency modulation (HFM) signals as subcarriers. The enhanced QMBOC signal (QMBOC-HFM) demonstrates superior anti-interference and positioning accuracy compared to the original QMBOC signal. The proposed QMBOC-HFM provides a potential signal design for future LEO navigation-augmented global satellite navigation systems.
期刊介绍:
Electronics Letters is an internationally renowned peer-reviewed rapid-communication journal that publishes short original research papers every two weeks. Its broad and interdisciplinary scope covers the latest developments in all electronic engineering related fields including communication, biomedical, optical and device technologies. Electronics Letters also provides further insight into some of the latest developments through special features and interviews.
Scope
As a journal at the forefront of its field, Electronics Letters publishes papers covering all themes of electronic and electrical engineering. The major themes of the journal are listed below.
Antennas and Propagation
Biomedical and Bioinspired Technologies, Signal Processing and Applications
Control Engineering
Electromagnetism: Theory, Materials and Devices
Electronic Circuits and Systems
Image, Video and Vision Processing and Applications
Information, Computing and Communications
Instrumentation and Measurement
Microwave Technology
Optical Communications
Photonics and Opto-Electronics
Power Electronics, Energy and Sustainability
Radar, Sonar and Navigation
Semiconductor Technology
Signal Processing
MIMO