James M. Watkins, Qicui Jia, Shuo Zhang, Laurent S. Devriendt, Sang Chen
{"title":"双团块同位素的珊瑚生物矿化模型","authors":"James M. Watkins, Qicui Jia, Shuo Zhang, Laurent S. Devriendt, Sang Chen","doi":"10.1029/2025GC012263","DOIUrl":null,"url":null,"abstract":"<p>Corals exhibit larger and more variable deviations from equilibrium in stable isotope composition (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>13</mn>\n </msup>\n </mrow>\n <annotation> ${\\delta }^{13}$</annotation>\n </semantics></math>C, <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>18</mn>\n </msup>\n </mrow>\n <annotation> ${\\delta }^{18}$</annotation>\n </semantics></math>O, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>47</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{47}$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>48</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{48}$</annotation>\n </semantics></math>) than most marine biocalcifiers. The disequilibrium isotope effects complicate paleoclimate applications but offer a window into biocalcification processes. Here, we merge a <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>47</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{47}$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>48</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{48}$</annotation>\n </semantics></math> isotope model in the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CaCO</mtext>\n <mn>3</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CaCO}}_{3}$</annotation>\n </semantics></math>-DIC-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>H</mi>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\mathrm{H}}_{2}$</annotation>\n </semantics></math>O system (Watkins & Devriendt, 2022, https://doi.org/10.1029/2021gc010200) with a coral biomineralization model (Chen et al., 2018, https://doi.org/10.1016/j.gca.2018.02.032) and compare its outputs to recent isotopic measurements. The model simultaneously fits the data from multiple coral species but requires a different set of parameters for deep-sea corals versus tropical corals. We find that: (a) Deviations from dual clumped isotope equilibrium are due primarily to the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> hydration reaction, the reversibility of which is modulated by the enzyme carbonic anhydrase (CA), the strength of the biological proton pump, and the kinetics of calcification. (b) Optimal data-model agreement for both <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>13</mn>\n </msup>\n </mrow>\n <annotation> ${\\delta }^{13}$</annotation>\n </semantics></math>C-<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>δ</mi>\n <mn>18</mn>\n </msup>\n </mrow>\n <annotation> ${\\delta }^{18}$</annotation>\n </semantics></math>O and <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>47</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{47}$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>48</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{48}$</annotation>\n </semantics></math> is achieved where CA increases the <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> hydration reaction rate by <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n </mrow>\n <annotation> ${\\sim} $</annotation>\n </semantics></math>2,000x for deep-sea corals and by 1–500x for tropical corals. (c) The <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>47</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{47}$</annotation>\n </semantics></math>-<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>Δ</mi>\n <mn>48</mn>\n </msub>\n </mrow>\n <annotation> ${{\\Delta }}_{48}$</annotation>\n </semantics></math> co-variation slope is sensitive to the cellular <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> flux relative to the seawater DIC flux, with higher cellular <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mtext>CO</mtext>\n <mn>2</mn>\n </msub>\n </mrow>\n <annotation> ${\\text{CO}}_{2}$</annotation>\n </semantics></math> and/or lower seawater throughput favoring a shallower slope. (d) For the most part, the modeled compositions of the calcifying fluids (e.g., pH, [<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mtext>CO</mtext>\n <mn>3</mn>\n <mrow>\n <mn>2</mn>\n <mo>−</mo>\n </mrow>\n </msubsup>\n </mrow>\n <annotation> ${\\text{CO}}_{3}^{2-}$</annotation>\n </semantics></math>], [<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>Ca</mtext>\n <mrow>\n <mn>2</mn>\n <mo>+</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{Ca}}^{2+}$</annotation>\n </semantics></math>]) are in good agreement with <i>in-situ</i> measurements. The data-model agreement constitutes an important step toward a general quantitative biocalcification model applicable to a wide variety of calcifying organisms.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012263","citationCount":"0","resultStr":"{\"title\":\"A Coral Biomineralization Model for Dual Clumped Isotopes\",\"authors\":\"James M. Watkins, Qicui Jia, Shuo Zhang, Laurent S. Devriendt, Sang Chen\",\"doi\":\"10.1029/2025GC012263\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Corals exhibit larger and more variable deviations from equilibrium in stable isotope composition (<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n <mn>13</mn>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\delta }^{13}$</annotation>\\n </semantics></math>C, <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n <mn>18</mn>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\delta }^{18}$</annotation>\\n </semantics></math>O, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Δ</mi>\\n <mn>47</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\Delta }}_{47}$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Δ</mi>\\n <mn>48</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\Delta }}_{48}$</annotation>\\n </semantics></math>) than most marine biocalcifiers. The disequilibrium isotope effects complicate paleoclimate applications but offer a window into biocalcification processes. Here, we merge a <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Δ</mi>\\n <mn>47</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\Delta }}_{47}$</annotation>\\n </semantics></math>-<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Δ</mi>\\n <mn>48</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\Delta }}_{48}$</annotation>\\n </semantics></math> isotope model in the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CaCO</mtext>\\n <mn>3</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CaCO}}_{3}$</annotation>\\n </semantics></math>-DIC-<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>H</mi>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\mathrm{H}}_{2}$</annotation>\\n </semantics></math>O system (Watkins & Devriendt, 2022, https://doi.org/10.1029/2021gc010200) with a coral biomineralization model (Chen et al., 2018, https://doi.org/10.1016/j.gca.2018.02.032) and compare its outputs to recent isotopic measurements. The model simultaneously fits the data from multiple coral species but requires a different set of parameters for deep-sea corals versus tropical corals. We find that: (a) Deviations from dual clumped isotope equilibrium are due primarily to the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math> hydration reaction, the reversibility of which is modulated by the enzyme carbonic anhydrase (CA), the strength of the biological proton pump, and the kinetics of calcification. (b) Optimal data-model agreement for both <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n <mn>13</mn>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\delta }^{13}$</annotation>\\n </semantics></math>C-<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n <mn>18</mn>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\delta }^{18}$</annotation>\\n </semantics></math>O and <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Δ</mi>\\n <mn>47</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\Delta }}_{47}$</annotation>\\n </semantics></math>-<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Δ</mi>\\n <mn>48</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\Delta }}_{48}$</annotation>\\n </semantics></math> is achieved where CA increases the <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math> hydration reaction rate by <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n </mrow>\\n <annotation> ${\\\\sim} $</annotation>\\n </semantics></math>2,000x for deep-sea corals and by 1–500x for tropical corals. (c) The <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Δ</mi>\\n <mn>47</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\Delta }}_{47}$</annotation>\\n </semantics></math>-<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>Δ</mi>\\n <mn>48</mn>\\n </msub>\\n </mrow>\\n <annotation> ${{\\\\Delta }}_{48}$</annotation>\\n </semantics></math> co-variation slope is sensitive to the cellular <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math> flux relative to the seawater DIC flux, with higher cellular <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mtext>CO</mtext>\\n <mn>2</mn>\\n </msub>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{2}$</annotation>\\n </semantics></math> and/or lower seawater throughput favoring a shallower slope. (d) For the most part, the modeled compositions of the calcifying fluids (e.g., pH, [<span></span><math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mtext>CO</mtext>\\n <mn>3</mn>\\n <mrow>\\n <mn>2</mn>\\n <mo>−</mo>\\n </mrow>\\n </msubsup>\\n </mrow>\\n <annotation> ${\\\\text{CO}}_{3}^{2-}$</annotation>\\n </semantics></math>], [<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>Ca</mtext>\\n <mrow>\\n <mn>2</mn>\\n <mo>+</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\text{Ca}}^{2+}$</annotation>\\n </semantics></math>]) are in good agreement with <i>in-situ</i> measurements. The data-model agreement constitutes an important step toward a general quantitative biocalcification model applicable to a wide variety of calcifying organisms.</p>\",\"PeriodicalId\":50422,\"journal\":{\"name\":\"Geochemistry Geophysics Geosystems\",\"volume\":\"26 9\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025GC012263\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geochemistry Geophysics Geosystems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GC012263\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025GC012263","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A Coral Biomineralization Model for Dual Clumped Isotopes
Corals exhibit larger and more variable deviations from equilibrium in stable isotope composition (C, O, and ) than most marine biocalcifiers. The disequilibrium isotope effects complicate paleoclimate applications but offer a window into biocalcification processes. Here, we merge a - isotope model in the -DIC-O system (Watkins & Devriendt, 2022, https://doi.org/10.1029/2021gc010200) with a coral biomineralization model (Chen et al., 2018, https://doi.org/10.1016/j.gca.2018.02.032) and compare its outputs to recent isotopic measurements. The model simultaneously fits the data from multiple coral species but requires a different set of parameters for deep-sea corals versus tropical corals. We find that: (a) Deviations from dual clumped isotope equilibrium are due primarily to the hydration reaction, the reversibility of which is modulated by the enzyme carbonic anhydrase (CA), the strength of the biological proton pump, and the kinetics of calcification. (b) Optimal data-model agreement for both C-O and - is achieved where CA increases the hydration reaction rate by 2,000x for deep-sea corals and by 1–500x for tropical corals. (c) The - co-variation slope is sensitive to the cellular flux relative to the seawater DIC flux, with higher cellular and/or lower seawater throughput favoring a shallower slope. (d) For the most part, the modeled compositions of the calcifying fluids (e.g., pH, [], []) are in good agreement with in-situ measurements. The data-model agreement constitutes an important step toward a general quantitative biocalcification model applicable to a wide variety of calcifying organisms.
期刊介绍:
Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged.
Areas of interest for this peer-reviewed journal include, but are not limited to:
The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution
Principles and applications of geochemical proxies to studies of Earth history
The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them
The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales
Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets
The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets
Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.