碳氢-金属复合材料的相平衡与热物性:深入分析与应用前景

CleanMat Pub Date : 2025-08-13 DOI:10.1002/clem.70011
Guoqing Liu, Tao Zhang
{"title":"碳氢-金属复合材料的相平衡与热物性:深入分析与应用前景","authors":"Guoqing Liu,&nbsp;Tao Zhang","doi":"10.1002/clem.70011","DOIUrl":null,"url":null,"abstract":"<p>Hydrochar–metal composites exhibit significant potential in catalysis and energy storage due to their tunable pore structures, high surface areas, and adjustable physicochemical properties. This review systematically examines preparation methods, phase equilibrium behavior, and thermophysical properties of these composites. Microstructural control is achieved by varying biomass types, hydrothermal conditions (temperature, time, pH), and metal incorporation approaches (direct addition or pretreatment). Metal type and content critically influence phase equilibrium, governing thermal conductivity (TC), specific heat capacity (SHC), and thermal expansion coefficient (CTE). Uniform metal dispersion and stable integration with the carbon matrix enhance catalytic activity and energy storage performance. High TC improves thermal management in catalysis, while high SHC and low CTE enhance energy storage stability by mitigating thermal fluctuations and mechanical stress. Challenges include phase equilibrium modeling, thermophysical characterization under extreme conditions, and scalable synthesis optimization. Future research should leverage machine learning, multifield coupling experiments, and advanced characterization to guide high-performance composite design.</p>","PeriodicalId":100258,"journal":{"name":"CleanMat","volume":"2 3","pages":"211-229"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clem.70011","citationCount":"0","resultStr":"{\"title\":\"Phase Equilibrium and Thermophysical Properties of Hydrochar–Metal Composites: In-Depth Analysis and Application Prospects\",\"authors\":\"Guoqing Liu,&nbsp;Tao Zhang\",\"doi\":\"10.1002/clem.70011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hydrochar–metal composites exhibit significant potential in catalysis and energy storage due to their tunable pore structures, high surface areas, and adjustable physicochemical properties. This review systematically examines preparation methods, phase equilibrium behavior, and thermophysical properties of these composites. Microstructural control is achieved by varying biomass types, hydrothermal conditions (temperature, time, pH), and metal incorporation approaches (direct addition or pretreatment). Metal type and content critically influence phase equilibrium, governing thermal conductivity (TC), specific heat capacity (SHC), and thermal expansion coefficient (CTE). Uniform metal dispersion and stable integration with the carbon matrix enhance catalytic activity and energy storage performance. High TC improves thermal management in catalysis, while high SHC and low CTE enhance energy storage stability by mitigating thermal fluctuations and mechanical stress. Challenges include phase equilibrium modeling, thermophysical characterization under extreme conditions, and scalable synthesis optimization. Future research should leverage machine learning, multifield coupling experiments, and advanced characterization to guide high-performance composite design.</p>\",\"PeriodicalId\":100258,\"journal\":{\"name\":\"CleanMat\",\"volume\":\"2 3\",\"pages\":\"211-229\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clem.70011\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CleanMat\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/clem.70011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CleanMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/clem.70011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

氢-金属复合材料由于其可调节的孔隙结构、高比表面积和可调节的物理化学性质,在催化和储能方面表现出巨大的潜力。本文系统地研究了这些复合材料的制备方法、相平衡行为和热物理性质。微观结构控制是通过改变生物质类型、水热条件(温度、时间、pH值)和金属掺入方法(直接添加或预处理)来实现的。金属类型和含量严重影响相平衡,控制热导率(TC),比热容(SHC)和热膨胀系数(CTE)。均匀的金属分散和与碳基体的稳定结合提高了催化活性和储能性能。高TC改善了催化过程中的热管理,而高SHC和低CTE通过减轻热波动和机械应力来增强储能稳定性。挑战包括相平衡建模,极端条件下的热物理表征,以及可扩展的合成优化。未来的研究应该利用机器学习、多场耦合实验和先进的表征来指导高性能复合材料的设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Phase Equilibrium and Thermophysical Properties of Hydrochar–Metal Composites: In-Depth Analysis and Application Prospects

Phase Equilibrium and Thermophysical Properties of Hydrochar–Metal Composites: In-Depth Analysis and Application Prospects

Hydrochar–metal composites exhibit significant potential in catalysis and energy storage due to their tunable pore structures, high surface areas, and adjustable physicochemical properties. This review systematically examines preparation methods, phase equilibrium behavior, and thermophysical properties of these composites. Microstructural control is achieved by varying biomass types, hydrothermal conditions (temperature, time, pH), and metal incorporation approaches (direct addition or pretreatment). Metal type and content critically influence phase equilibrium, governing thermal conductivity (TC), specific heat capacity (SHC), and thermal expansion coefficient (CTE). Uniform metal dispersion and stable integration with the carbon matrix enhance catalytic activity and energy storage performance. High TC improves thermal management in catalysis, while high SHC and low CTE enhance energy storage stability by mitigating thermal fluctuations and mechanical stress. Challenges include phase equilibrium modeling, thermophysical characterization under extreme conditions, and scalable synthesis optimization. Future research should leverage machine learning, multifield coupling experiments, and advanced characterization to guide high-performance composite design.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信