用于可穿戴式健康监测的高灵敏度MXene/MWCNTs/PDMS柔性电容式传感器

IF 6.4 3区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Xin Li, Quan Liang, Huifang Liu, Luyao Zhao, Chuanming Sun, Chunye Hou
{"title":"用于可穿戴式健康监测的高灵敏度MXene/MWCNTs/PDMS柔性电容式传感器","authors":"Xin Li,&nbsp;Quan Liang,&nbsp;Huifang Liu,&nbsp;Luyao Zhao,&nbsp;Chuanming Sun,&nbsp;Chunye Hou","doi":"10.1002/admt.202500677","DOIUrl":null,"url":null,"abstract":"<p>With the rapid advancement of wearable electronics, this study develops a flexible capacitive pressure sensor employing an MXene/MWCNTs/PDMS composite dielectric layer for high-precision health monitoring. The synergistic integration of 2D MXene nanosheets and 1D MWCNTs within the PDMS matrix forms a 3D conductive network, which enhances dielectric properties while preserving flexibility. Utilizing R1.6 electrohydrodynamic jet-printed copper electrodes alongside spin-coated dielectric layers of 25 µm thickness, the sensor achieves an exceptional sensitivity of 0.32 kPa⁻¹, an ultra-low detection limit of 0.18 Pa, rapid response and recovery times of 40 and 55 ms respectively, and a broad sensing range spanning 0.005 to 50 kPa. SEM characterization reveals that MWCNTs bridge interlayer gaps between MXene sheets, mitigating agglomeration and facilitating efficient charge transport. The PDMS matrix imparts mechanical robustness, as demonstrated by stable sensor performance over 6000 compression cycles. Practical evaluations confirm the sensor's capability to monitor multidimensional physiological activities–including joint movements, plantar pressure, respiratory rhythms, and pulse waveforms–with signal fidelity comparable to clinical-grade devices. This work addresses the sensitivity-flexibility trade-off encountered in conventional sensors through hierarchical material design and proposes a scalable fabrication strategy suitable for next-generation wearable medical technologies.</p>","PeriodicalId":7292,"journal":{"name":"Advanced Materials Technologies","volume":"10 18","pages":""},"PeriodicalIF":6.4000,"publicationDate":"2025-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-Sensitivity MXene/MWCNTs/PDMS Flexible Capacitive Sensor for Wearable Health Monitoring\",\"authors\":\"Xin Li,&nbsp;Quan Liang,&nbsp;Huifang Liu,&nbsp;Luyao Zhao,&nbsp;Chuanming Sun,&nbsp;Chunye Hou\",\"doi\":\"10.1002/admt.202500677\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the rapid advancement of wearable electronics, this study develops a flexible capacitive pressure sensor employing an MXene/MWCNTs/PDMS composite dielectric layer for high-precision health monitoring. The synergistic integration of 2D MXene nanosheets and 1D MWCNTs within the PDMS matrix forms a 3D conductive network, which enhances dielectric properties while preserving flexibility. Utilizing R1.6 electrohydrodynamic jet-printed copper electrodes alongside spin-coated dielectric layers of 25 µm thickness, the sensor achieves an exceptional sensitivity of 0.32 kPa⁻¹, an ultra-low detection limit of 0.18 Pa, rapid response and recovery times of 40 and 55 ms respectively, and a broad sensing range spanning 0.005 to 50 kPa. SEM characterization reveals that MWCNTs bridge interlayer gaps between MXene sheets, mitigating agglomeration and facilitating efficient charge transport. The PDMS matrix imparts mechanical robustness, as demonstrated by stable sensor performance over 6000 compression cycles. Practical evaluations confirm the sensor's capability to monitor multidimensional physiological activities–including joint movements, plantar pressure, respiratory rhythms, and pulse waveforms–with signal fidelity comparable to clinical-grade devices. This work addresses the sensitivity-flexibility trade-off encountered in conventional sensors through hierarchical material design and proposes a scalable fabrication strategy suitable for next-generation wearable medical technologies.</p>\",\"PeriodicalId\":7292,\"journal\":{\"name\":\"Advanced Materials Technologies\",\"volume\":\"10 18\",\"pages\":\"\"},\"PeriodicalIF\":6.4000,\"publicationDate\":\"2025-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials Technologies\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admt.202500677\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials Technologies","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/admt.202500677","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着可穿戴电子技术的快速发展,本研究开发了一种采用MXene/MWCNTs/PDMS复合介质层的柔性电容式压力传感器,用于高精度健康监测。二维MXene纳米片和一维MWCNTs在PDMS基体内的协同集成形成了一个三维导电网络,在保持柔韧性的同时增强了介电性能。该传感器采用R1.6电流体动力喷射印刷铜电极和25µm厚度的自旋涂层介电层,实现了0.32 kPa⁻¹的超高灵敏度,0.18 Pa的超低检测限,40 ms和55 ms的快速响应和恢复时间,以及0.005至50 kPa的宽传感范围。SEM表征表明,MWCNTs架起了MXene薄片之间的层间间隙,减轻了团聚并促进了有效的电荷传输。PDMS矩阵赋予机械鲁棒性,在6000次压缩循环中稳定的传感器性能证明了这一点。实际评估证实了该传感器监测多维生理活动的能力,包括关节运动、足底压力、呼吸节奏和脉冲波形,其信号保真度可与临床级设备相媲美。这项工作通过分层材料设计解决了传统传感器中遇到的灵敏度和灵活性权衡问题,并提出了适用于下一代可穿戴医疗技术的可扩展制造策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

High-Sensitivity MXene/MWCNTs/PDMS Flexible Capacitive Sensor for Wearable Health Monitoring

High-Sensitivity MXene/MWCNTs/PDMS Flexible Capacitive Sensor for Wearable Health Monitoring

High-Sensitivity MXene/MWCNTs/PDMS Flexible Capacitive Sensor for Wearable Health Monitoring

High-Sensitivity MXene/MWCNTs/PDMS Flexible Capacitive Sensor for Wearable Health Monitoring

With the rapid advancement of wearable electronics, this study develops a flexible capacitive pressure sensor employing an MXene/MWCNTs/PDMS composite dielectric layer for high-precision health monitoring. The synergistic integration of 2D MXene nanosheets and 1D MWCNTs within the PDMS matrix forms a 3D conductive network, which enhances dielectric properties while preserving flexibility. Utilizing R1.6 electrohydrodynamic jet-printed copper electrodes alongside spin-coated dielectric layers of 25 µm thickness, the sensor achieves an exceptional sensitivity of 0.32 kPa⁻¹, an ultra-low detection limit of 0.18 Pa, rapid response and recovery times of 40 and 55 ms respectively, and a broad sensing range spanning 0.005 to 50 kPa. SEM characterization reveals that MWCNTs bridge interlayer gaps between MXene sheets, mitigating agglomeration and facilitating efficient charge transport. The PDMS matrix imparts mechanical robustness, as demonstrated by stable sensor performance over 6000 compression cycles. Practical evaluations confirm the sensor's capability to monitor multidimensional physiological activities–including joint movements, plantar pressure, respiratory rhythms, and pulse waveforms–with signal fidelity comparable to clinical-grade devices. This work addresses the sensitivity-flexibility trade-off encountered in conventional sensors through hierarchical material design and proposes a scalable fabrication strategy suitable for next-generation wearable medical technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials Technologies
Advanced Materials Technologies Materials Science-General Materials Science
CiteScore
10.20
自引率
4.40%
发文量
566
期刊介绍: Advanced Materials Technologies Advanced Materials Technologies is the new home for all technology-related materials applications research, with particular focus on advanced device design, fabrication and integration, as well as new technologies based on novel materials. It bridges the gap between fundamental laboratory research and industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信