电阻率和感应极化的光谱有限元正演模拟

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS
Kiana Damavandi, Hom Nath Gharti
{"title":"电阻率和感应极化的光谱有限元正演模拟","authors":"Kiana Damavandi,&nbsp;Hom Nath Gharti","doi":"10.1111/1365-2478.70080","DOIUrl":null,"url":null,"abstract":"<p>Accurate and efficient modelling of subsurface electrical properties is critical for a wide range of applications, including mineral exploration, environmental studies and hydrogeological investigations. Traditional numerical approaches often use low-order discretization and impose artificial boundary conditions to approximate the unbounded spatial domain. These approximations can lead to inaccuracies and computational inefficiency, particularly in geologically complex environments. In this study, we present a spectral-infinite-element method (SIEM) for forward modelling of electrical resistivity and induced polarization. The approach couples high-order spectral elements within the finite domain with a single outer layer of mapped infinite elements, enabling precise representation of far-field boundary conditions. To achieve optimal numerical performance, we employ two distinct quadrature schemes: Gauss–Legendre–Lobatto quadrature for the spectral elements and Gauss–Radau quadrature for the infinite elements. We first verify the accuracy of our method by comparing the computed electric potential from a buried charged block with direct numerical integration. We conducted a convergence study by refining the mesh and increasing the order of the interpolation polynomials. To further evaluate the robustness of SIEM, we benchmark its results for a layered earth model against an analytical solution and an open-source Python-based geophysical modelling library, SimPEG. The comparisons demonstrate the accuracy, convergence and efficiency of SIEM. Finally, we apply SIEM to a complex heterogeneous conductivity model incorporating topography, generating apparent resistivity and chargeability pseudo-sections to illustrate its practical applicability under realistic survey conditions.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.70080","citationCount":"0","resultStr":"{\"title\":\"Forward Modelling of Electrical Resistivity and Induced Polarization Using the Spectral-Infinite-Element Method\",\"authors\":\"Kiana Damavandi,&nbsp;Hom Nath Gharti\",\"doi\":\"10.1111/1365-2478.70080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Accurate and efficient modelling of subsurface electrical properties is critical for a wide range of applications, including mineral exploration, environmental studies and hydrogeological investigations. Traditional numerical approaches often use low-order discretization and impose artificial boundary conditions to approximate the unbounded spatial domain. These approximations can lead to inaccuracies and computational inefficiency, particularly in geologically complex environments. In this study, we present a spectral-infinite-element method (SIEM) for forward modelling of electrical resistivity and induced polarization. The approach couples high-order spectral elements within the finite domain with a single outer layer of mapped infinite elements, enabling precise representation of far-field boundary conditions. To achieve optimal numerical performance, we employ two distinct quadrature schemes: Gauss–Legendre–Lobatto quadrature for the spectral elements and Gauss–Radau quadrature for the infinite elements. We first verify the accuracy of our method by comparing the computed electric potential from a buried charged block with direct numerical integration. We conducted a convergence study by refining the mesh and increasing the order of the interpolation polynomials. To further evaluate the robustness of SIEM, we benchmark its results for a layered earth model against an analytical solution and an open-source Python-based geophysical modelling library, SimPEG. The comparisons demonstrate the accuracy, convergence and efficiency of SIEM. Finally, we apply SIEM to a complex heterogeneous conductivity model incorporating topography, generating apparent resistivity and chargeability pseudo-sections to illustrate its practical applicability under realistic survey conditions.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":\"73 7\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.70080\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70080\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70080","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

准确、高效的地下电特性建模对于矿产勘探、环境研究和水文地质调查等广泛应用至关重要。传统的数值方法通常采用低阶离散化并施加人工边界条件来近似无界空间域。这些近似可能导致不准确和计算效率低下,特别是在地质复杂的环境中。在这项研究中,我们提出了一种用于电阻率和感应极化正演模拟的光谱-无限元方法(SIEM)。该方法将有限域中的高阶谱元与映射的无限元的单一外层耦合在一起,从而能够精确地表示远场边界条件。为了获得最佳的数值性能,我们采用了两种不同的正交方案:光谱单元的高斯-勒让德-洛巴托正交和无限单元的高斯-拉多正交。我们首先通过比较埋藏带电块的计算电势和直接数值积分来验证我们方法的准确性。我们通过细化网格和增加插值多项式的阶数来进行收敛性研究。为了进一步评估SIEM的鲁棒性,我们将其结果与解析解和基于python的开源地球物理建模库SimPEG进行了对比。对比结果表明,该方法具有较好的准确性、收敛性和高效性。最后,我们将SIEM应用于包含地形的复杂非均质电导率模型,生成视电阻率和电荷率伪剖面,以说明其在实际测量条件下的实际适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Forward Modelling of Electrical Resistivity and Induced Polarization Using the Spectral-Infinite-Element Method

Forward Modelling of Electrical Resistivity and Induced Polarization Using the Spectral-Infinite-Element Method

Accurate and efficient modelling of subsurface electrical properties is critical for a wide range of applications, including mineral exploration, environmental studies and hydrogeological investigations. Traditional numerical approaches often use low-order discretization and impose artificial boundary conditions to approximate the unbounded spatial domain. These approximations can lead to inaccuracies and computational inefficiency, particularly in geologically complex environments. In this study, we present a spectral-infinite-element method (SIEM) for forward modelling of electrical resistivity and induced polarization. The approach couples high-order spectral elements within the finite domain with a single outer layer of mapped infinite elements, enabling precise representation of far-field boundary conditions. To achieve optimal numerical performance, we employ two distinct quadrature schemes: Gauss–Legendre–Lobatto quadrature for the spectral elements and Gauss–Radau quadrature for the infinite elements. We first verify the accuracy of our method by comparing the computed electric potential from a buried charged block with direct numerical integration. We conducted a convergence study by refining the mesh and increasing the order of the interpolation polynomials. To further evaluate the robustness of SIEM, we benchmark its results for a layered earth model against an analytical solution and an open-source Python-based geophysical modelling library, SimPEG. The comparisons demonstrate the accuracy, convergence and efficiency of SIEM. Finally, we apply SIEM to a complex heterogeneous conductivity model incorporating topography, generating apparent resistivity and chargeability pseudo-sections to illustrate its practical applicability under realistic survey conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信