W. Harhad, A. Bouabdallah, T. H. Abdelatif, S. NaitAmor, Z. Meliani
{"title":"太阳大气向下磁通量传输中的磁瑞利-泰勒不稳定性","authors":"W. Harhad, A. Bouabdallah, T. H. Abdelatif, S. NaitAmor, Z. Meliani","doi":"10.1029/2025JA034214","DOIUrl":null,"url":null,"abstract":"<p>Descending cold plasma structures are observed and are thought to result from the Magnetic Rayleigh<span></span><math>\n <semantics>\n <mrow>\n <mo>-</mo>\n </mrow>\n <annotation> $\\mbox{-}$</annotation>\n </semantics></math>Taylor Instability (MRTI), which facilitates the downward transport of plasma toward the photosphere and contributes to the restructuring of the magnetic field. In this study, we perform 2.5D nonlinear compressible magnetohydrodynamics (MHD) simulation using the open<span></span><math>\n <semantics>\n <mrow>\n <mo>-</mo>\n </mrow>\n <annotation> $\\mbox{-}$</annotation>\n </semantics></math>source MPI<span></span><math>\n <semantics>\n <mrow>\n <mo>-</mo>\n </mrow>\n <annotation> $\\mbox{-}$</annotation>\n </semantics></math>AMRVAC code to investigate the role of MRTI under chromospheric<span></span><math>\n <semantics>\n <mrow>\n <mo>/</mo>\n </mrow>\n <annotation> $/$</annotation>\n </semantics></math>photospheric conditions. Our results show that the transverse magnetic field <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>B</mi>\n <mi>x</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({B}_{x}\\right)$</annotation>\n </semantics></math> alters the MRTI growth by modifying the critical wavelength and delaying its onset, while the longitudinal component <span></span><math>\n <semantics>\n <mrow>\n <mfenced>\n <msub>\n <mi>B</mi>\n <mi>z</mi>\n </msub>\n </mfenced>\n </mrow>\n <annotation> $\\left({B}_{z}\\right)$</annotation>\n </semantics></math> governs the buoyancy<span></span><math>\n <semantics>\n <mrow>\n <mo>-</mo>\n </mrow>\n <annotation> $\\mbox{-}$</annotation>\n </semantics></math>driven dynamics, influencing the size and descent speed of mushroom<span></span><math>\n <semantics>\n <mrow>\n <mo>-</mo>\n </mrow>\n <annotation> $\\mbox{-}$</annotation>\n </semantics></math>like structures. The height evolution of these structures exhibits a slow linear phase followed by a rapid quadratic phase. Upon reaching the photosphere, their interaction with the surrounding magnetic field further shapes the mushrooms. This study highlights the crucial role of MRTI in the magnetic flux drainage from the chromosphere to the photosphere and its contribution to magnetic field restructuring, impacting the evolution of active regions and the formation of penumbral structures.</p>","PeriodicalId":15894,"journal":{"name":"Journal of Geophysical Research: Space Physics","volume":"130 9","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetic Rayleigh-Taylor Instability in Solar Atmosphere Downward Magnetic Flux Transport\",\"authors\":\"W. Harhad, A. Bouabdallah, T. H. Abdelatif, S. NaitAmor, Z. Meliani\",\"doi\":\"10.1029/2025JA034214\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Descending cold plasma structures are observed and are thought to result from the Magnetic Rayleigh<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>-</mo>\\n </mrow>\\n <annotation> $\\\\mbox{-}$</annotation>\\n </semantics></math>Taylor Instability (MRTI), which facilitates the downward transport of plasma toward the photosphere and contributes to the restructuring of the magnetic field. In this study, we perform 2.5D nonlinear compressible magnetohydrodynamics (MHD) simulation using the open<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>-</mo>\\n </mrow>\\n <annotation> $\\\\mbox{-}$</annotation>\\n </semantics></math>source MPI<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>-</mo>\\n </mrow>\\n <annotation> $\\\\mbox{-}$</annotation>\\n </semantics></math>AMRVAC code to investigate the role of MRTI under chromospheric<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>/</mo>\\n </mrow>\\n <annotation> $/$</annotation>\\n </semantics></math>photospheric conditions. Our results show that the transverse magnetic field <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>B</mi>\\n <mi>x</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({B}_{x}\\\\right)$</annotation>\\n </semantics></math> alters the MRTI growth by modifying the critical wavelength and delaying its onset, while the longitudinal component <span></span><math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <msub>\\n <mi>B</mi>\\n <mi>z</mi>\\n </msub>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left({B}_{z}\\\\right)$</annotation>\\n </semantics></math> governs the buoyancy<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>-</mo>\\n </mrow>\\n <annotation> $\\\\mbox{-}$</annotation>\\n </semantics></math>driven dynamics, influencing the size and descent speed of mushroom<span></span><math>\\n <semantics>\\n <mrow>\\n <mo>-</mo>\\n </mrow>\\n <annotation> $\\\\mbox{-}$</annotation>\\n </semantics></math>like structures. The height evolution of these structures exhibits a slow linear phase followed by a rapid quadratic phase. Upon reaching the photosphere, their interaction with the surrounding magnetic field further shapes the mushrooms. This study highlights the crucial role of MRTI in the magnetic flux drainage from the chromosphere to the photosphere and its contribution to magnetic field restructuring, impacting the evolution of active regions and the formation of penumbral structures.</p>\",\"PeriodicalId\":15894,\"journal\":{\"name\":\"Journal of Geophysical Research: Space Physics\",\"volume\":\"130 9\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Space Physics\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034214\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Space Physics","FirstCategoryId":"89","ListUrlMain":"https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2025JA034214","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
观测到的下降冷等离子体结构被认为是由磁瑞利- {\mbox{-}}$ Taylor不稳定性(MRTI)引起的,它促进了等离子体向光球的向下传输,并有助于磁场的重构。在本研究中,我们使用open - $\mbox{-}$ source MPI - $\mbox{-}$ AMRVAC代码进行2.5D非线性可压缩磁流体动力学(MHD)模拟,以研究MRTI在色球/$ /$光球条件下的作用。结果表明,横向磁场B x $\左({B}_{x}\右)$通过改变临界波长和延迟其开始时间来改变MRTI的生长;而纵向分量B z $\左({B}_{z}\右)$控制浮力$\mbox{-}$驱动的动力学,影响蘑菇- $\mbox{-}$状结构的大小和下降速度。这些结构的高度演化表现为缓慢的线性阶段,随后是快速的二次阶段。到达光球后,它们与周围磁场的相互作用进一步塑造了蘑菇。这项研究强调了MRTI在从色球到光球的磁通量引流过程中的关键作用及其对磁场重构的贡献,影响了活动区域的演化和半影结构的形成。
Magnetic Rayleigh-Taylor Instability in Solar Atmosphere Downward Magnetic Flux Transport
Descending cold plasma structures are observed and are thought to result from the Magnetic RayleighTaylor Instability (MRTI), which facilitates the downward transport of plasma toward the photosphere and contributes to the restructuring of the magnetic field. In this study, we perform 2.5D nonlinear compressible magnetohydrodynamics (MHD) simulation using the opensource MPIAMRVAC code to investigate the role of MRTI under chromosphericphotospheric conditions. Our results show that the transverse magnetic field alters the MRTI growth by modifying the critical wavelength and delaying its onset, while the longitudinal component governs the buoyancydriven dynamics, influencing the size and descent speed of mushroomlike structures. The height evolution of these structures exhibits a slow linear phase followed by a rapid quadratic phase. Upon reaching the photosphere, their interaction with the surrounding magnetic field further shapes the mushrooms. This study highlights the crucial role of MRTI in the magnetic flux drainage from the chromosphere to the photosphere and its contribution to magnetic field restructuring, impacting the evolution of active regions and the formation of penumbral structures.