无硼空心ZSM-5沸石包覆镍的乙烯低聚选择性和微动力学研究

IF 3.9 3区 化学 Q2 CHEMISTRY, PHYSICAL
ChemCatChem Pub Date : 2025-08-15 DOI:10.1002/cctc.202500957
Omar Abed, Hend Omar Mohammed, Rushana Khairova, Idoia Hita, Vijay Velisoju, Natalia Morlanés, Mark Meijerink, Abdul-Hamid Emwas, Sergio Vernuccio, Pedro Castaño
{"title":"无硼空心ZSM-5沸石包覆镍的乙烯低聚选择性和微动力学研究","authors":"Omar Abed,&nbsp;Hend Omar Mohammed,&nbsp;Rushana Khairova,&nbsp;Idoia Hita,&nbsp;Vijay Velisoju,&nbsp;Natalia Morlanés,&nbsp;Mark Meijerink,&nbsp;Abdul-Hamid Emwas,&nbsp;Sergio Vernuccio,&nbsp;Pedro Castaño","doi":"10.1002/cctc.202500957","DOIUrl":null,"url":null,"abstract":"<p>We encapsulated Ni nanoparticles in a hollow ZSM-5 zeolite catalyst using the dissolution-recrystallization method to catalyze ethylene oligomerization. Our aim is to engineer an idealized catalyst free of Brønsted acid contributions to kinetics or deactivation, having isolated and encapsulated Ni<sup>2</sup>⁺–zeolite species, to study the intrinsic oligomerization kinetics on Ni<sup>2</sup>⁺–zeolite through an experimental and microkinetic standpoint. We proved how the hollow architecture encapsulates both Ni<sup>2</sup>⁺ and NiO species, being the former significantly more active and selective toward dimerization. A comprehensive microkinetic model, grounded in the Cossee-Arlman mechanism and parameterized using experimental data, provides a detailed understanding of the reaction network on isolated Ni<sup>2</sup>⁺ sites. The model reveals that while linear butene formation dominates, its selectivity decreases with increasing ethylene conversion, temperature, and pressure, highlighting the contribution of isomerization pathways at elevated temperatures. This study focuses on the method to develop isolated oligomerization sites and then studies the intrinsic microkinetic pathways and rates.</p>","PeriodicalId":141,"journal":{"name":"ChemCatChem","volume":"17 18","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Selectivity and Microkinetic Insights on Ethylene Oligomerization over Ni Encapsulated in a Brønsted-less Hollow ZSM-5 Zeolite\",\"authors\":\"Omar Abed,&nbsp;Hend Omar Mohammed,&nbsp;Rushana Khairova,&nbsp;Idoia Hita,&nbsp;Vijay Velisoju,&nbsp;Natalia Morlanés,&nbsp;Mark Meijerink,&nbsp;Abdul-Hamid Emwas,&nbsp;Sergio Vernuccio,&nbsp;Pedro Castaño\",\"doi\":\"10.1002/cctc.202500957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We encapsulated Ni nanoparticles in a hollow ZSM-5 zeolite catalyst using the dissolution-recrystallization method to catalyze ethylene oligomerization. Our aim is to engineer an idealized catalyst free of Brønsted acid contributions to kinetics or deactivation, having isolated and encapsulated Ni<sup>2</sup>⁺–zeolite species, to study the intrinsic oligomerization kinetics on Ni<sup>2</sup>⁺–zeolite through an experimental and microkinetic standpoint. We proved how the hollow architecture encapsulates both Ni<sup>2</sup>⁺ and NiO species, being the former significantly more active and selective toward dimerization. A comprehensive microkinetic model, grounded in the Cossee-Arlman mechanism and parameterized using experimental data, provides a detailed understanding of the reaction network on isolated Ni<sup>2</sup>⁺ sites. The model reveals that while linear butene formation dominates, its selectivity decreases with increasing ethylene conversion, temperature, and pressure, highlighting the contribution of isomerization pathways at elevated temperatures. This study focuses on the method to develop isolated oligomerization sites and then studies the intrinsic microkinetic pathways and rates.</p>\",\"PeriodicalId\":141,\"journal\":{\"name\":\"ChemCatChem\",\"volume\":\"17 18\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemCatChem\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500957\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemCatChem","FirstCategoryId":"92","ListUrlMain":"https://chemistry-europe.onlinelibrary.wiley.com/doi/10.1002/cctc.202500957","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用溶解-重结晶法将Ni纳米颗粒包埋在空心ZSM-5沸石催化剂中,催化乙烯低聚反应。我们的目标是设计一种理想的催化剂,不含Brønsted酸,对动力学或失活有贡献,分离和封装Ni2 + -沸石物种,从实验和微动力学的角度研究Ni2 + -沸石的本征寡聚动力学。我们证明了空心结构如何封装Ni2 +和NiO两种物质,前者明显更活跃,对二聚化更有选择性。基于Cossee-Arlman机理并使用实验数据参数化的综合微动力学模型,可以详细了解Ni2⁺在孤立位点上的反应网络。该模型显示,虽然线性丁烯形成占主导地位,但其选择性随着乙烯转化率、温度和压力的增加而降低,突出了高温下异构化途径的贡献。本研究的重点是开发分离寡聚化位点的方法,然后研究其内在的微动力学途径和速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Selectivity and Microkinetic Insights on Ethylene Oligomerization over Ni Encapsulated in a Brønsted-less Hollow ZSM-5 Zeolite

Selectivity and Microkinetic Insights on Ethylene Oligomerization over Ni Encapsulated in a Brønsted-less Hollow ZSM-5 Zeolite

Selectivity and Microkinetic Insights on Ethylene Oligomerization over Ni Encapsulated in a Brønsted-less Hollow ZSM-5 Zeolite

Selectivity and Microkinetic Insights on Ethylene Oligomerization over Ni Encapsulated in a Brønsted-less Hollow ZSM-5 Zeolite

We encapsulated Ni nanoparticles in a hollow ZSM-5 zeolite catalyst using the dissolution-recrystallization method to catalyze ethylene oligomerization. Our aim is to engineer an idealized catalyst free of Brønsted acid contributions to kinetics or deactivation, having isolated and encapsulated Ni2⁺–zeolite species, to study the intrinsic oligomerization kinetics on Ni2⁺–zeolite through an experimental and microkinetic standpoint. We proved how the hollow architecture encapsulates both Ni2⁺ and NiO species, being the former significantly more active and selective toward dimerization. A comprehensive microkinetic model, grounded in the Cossee-Arlman mechanism and parameterized using experimental data, provides a detailed understanding of the reaction network on isolated Ni2⁺ sites. The model reveals that while linear butene formation dominates, its selectivity decreases with increasing ethylene conversion, temperature, and pressure, highlighting the contribution of isomerization pathways at elevated temperatures. This study focuses on the method to develop isolated oligomerization sites and then studies the intrinsic microkinetic pathways and rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemCatChem
ChemCatChem 化学-物理化学
CiteScore
8.10
自引率
4.40%
发文量
511
审稿时长
1.3 months
期刊介绍: With an impact factor of 4.495 (2018), ChemCatChem is one of the premier journals in the field of catalysis. The journal provides primary research papers and critical secondary information on heterogeneous, homogeneous and bio- and nanocatalysis. The journal is well placed to strengthen cross-communication within between these communities. Its authors and readers come from academia, the chemical industry, and government laboratories across the world. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies, and is supported by the German Catalysis Society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信