阿曼陨石的宇宙射线暴露年龄和大气前屏蔽:对热沙漠和冷沙漠陨石14C和14C/10Be地球年龄的启示

IF 2.4 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Mohammad Tauseef, Ingo Leya, Beda Hofmann
{"title":"阿曼陨石的宇宙射线暴露年龄和大气前屏蔽:对热沙漠和冷沙漠陨石14C和14C/10Be地球年龄的启示","authors":"Mohammad Tauseef,&nbsp;Ingo Leya,&nbsp;Beda Hofmann","doi":"10.1111/maps.70029","DOIUrl":null,"url":null,"abstract":"<p>We present isotope concentrations of the light noble gases He and Ne for samples from five well-documented strewnfields and two individual meteorites from the Omani desert. Cosmogenic (<sup>22</sup>Ne/<sup>21</sup>Ne)<sub>cos</sub> for the strewnfield samples are low, as expected considering the total known masses. A (<sup>22</sup>Ne/<sup>21</sup>Ne)<sub>cos</sub> of 1.210 for the LL6 chondrite RaS 267 from Oman indicates a small pre-atmospheric size of less than 10 cm. The CRE ages for the Omani meteorites calculated using <sup>21</sup>Ne<sub>cos</sub> range from 1 to 20 Ma. Using the (<sup>22</sup>Ne/<sup>21</sup>Ne)<sub>cos</sub> and previously established correlations, new shielding-corrected <sup>14</sup>C and <sup>14</sup>C-<sup>10</sup>Be terrestrial ages are calculated. For the strewnfield samples, the new ages are similar to the earlier ages but are more consistent. The new terrestrial age for RaS 267 is more than 20% lower than the previous age. Motivated by this success, we reinvestigated meteorites from other hot deserts (Acfer, Adrar, and Nullarbor regions) and Antarctica using literature data for <sup>14</sup>C and (<sup>22</sup>Ne/<sup>21</sup>Ne)<sub>cos</sub>, along with the newly established correlations between <sup>14</sup>C production rates and (<sup>22</sup>Ne/<sup>21</sup>Ne)<sub>cos</sub>. For these meteorites, the new terrestrial ages are systematically younger than the ages calculated earlier using a shielding-independent approach. Using shielding-corrected <sup>14</sup>C terrestrial ages, the long-term puzzling problem that there is a lack of meteorites with short terrestrial ages disappears. The new histogram, though with only a limited number of data, shows the expected decrease in the number of meteorites with increasing terrestrial age. Therefore, the unexpected shape in the terrestrial age histogram was most likely due to a bias in the <sup>14</sup>C dating system, that is, ages of small meteorites are overestimated.</p>","PeriodicalId":18555,"journal":{"name":"Meteoritics & Planetary Science","volume":"60 9","pages":"2184-2196"},"PeriodicalIF":2.4000,"publicationDate":"2025-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.70029","citationCount":"0","resultStr":"{\"title\":\"Cosmic ray exposure ages and pre-atmospheric shielding of Omani meteorites: Implications for 14C and 14C/10Be terrestrial ages of meteorites from hot and cold deserts\",\"authors\":\"Mohammad Tauseef,&nbsp;Ingo Leya,&nbsp;Beda Hofmann\",\"doi\":\"10.1111/maps.70029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present isotope concentrations of the light noble gases He and Ne for samples from five well-documented strewnfields and two individual meteorites from the Omani desert. Cosmogenic (<sup>22</sup>Ne/<sup>21</sup>Ne)<sub>cos</sub> for the strewnfield samples are low, as expected considering the total known masses. A (<sup>22</sup>Ne/<sup>21</sup>Ne)<sub>cos</sub> of 1.210 for the LL6 chondrite RaS 267 from Oman indicates a small pre-atmospheric size of less than 10 cm. The CRE ages for the Omani meteorites calculated using <sup>21</sup>Ne<sub>cos</sub> range from 1 to 20 Ma. Using the (<sup>22</sup>Ne/<sup>21</sup>Ne)<sub>cos</sub> and previously established correlations, new shielding-corrected <sup>14</sup>C and <sup>14</sup>C-<sup>10</sup>Be terrestrial ages are calculated. For the strewnfield samples, the new ages are similar to the earlier ages but are more consistent. The new terrestrial age for RaS 267 is more than 20% lower than the previous age. Motivated by this success, we reinvestigated meteorites from other hot deserts (Acfer, Adrar, and Nullarbor regions) and Antarctica using literature data for <sup>14</sup>C and (<sup>22</sup>Ne/<sup>21</sup>Ne)<sub>cos</sub>, along with the newly established correlations between <sup>14</sup>C production rates and (<sup>22</sup>Ne/<sup>21</sup>Ne)<sub>cos</sub>. For these meteorites, the new terrestrial ages are systematically younger than the ages calculated earlier using a shielding-independent approach. Using shielding-corrected <sup>14</sup>C terrestrial ages, the long-term puzzling problem that there is a lack of meteorites with short terrestrial ages disappears. The new histogram, though with only a limited number of data, shows the expected decrease in the number of meteorites with increasing terrestrial age. Therefore, the unexpected shape in the terrestrial age histogram was most likely due to a bias in the <sup>14</sup>C dating system, that is, ages of small meteorites are overestimated.</p>\",\"PeriodicalId\":18555,\"journal\":{\"name\":\"Meteoritics & Planetary Science\",\"volume\":\"60 9\",\"pages\":\"2184-2196\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/maps.70029\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteoritics & Planetary Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/maps.70029\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteoritics & Planetary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/maps.70029","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了从阿曼沙漠的五个有充分记录的沼泽和两个单独的陨石样品中提取的轻惰性气体He和Ne的同位素浓度。考虑到已知的总质量,streefield样品的宇宙成因(22Ne/21Ne)cos很低。来自阿曼的LL6球粒陨石RaS 267的A (22Ne/21Ne)cos为1.210,表明其大气前尺寸小于10 cm。用21Necos计算阿曼陨石的CRE年龄在1 ~ 20 Ma之间。利用(22Ne/21Ne)cos和先前建立的相关性,计算出新的屏蔽校正的14C和14C- 10be地球年龄。对于流场样品,新年龄与早期年龄相似,但更一致。RaS 267的新地球年龄比以前的年龄低20%以上。在这一成功的激励下,我们重新研究了来自其他热沙漠(Acfer, Adrar和Nullarbor地区)和南极洲的陨石,使用14C和(22Ne/21Ne)cos的文献数据,以及新建立的14C生成速率与(22Ne/21Ne)cos之间的相关性。对于这些陨石来说,新的地球年龄比之前使用不依赖于屏蔽的方法计算出的年龄系统地年轻。利用屏蔽校正的14C地球年龄,缺乏短地球年龄陨石的长期困惑问题就消失了。新的直方图虽然只有有限数量的数据,但显示了随着地球年龄的增加,陨石数量的预期减少。因此,地球年龄直方图中意外的形状很可能是由于14C测年系统的偏差,即小陨石的年龄被高估了。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Cosmic ray exposure ages and pre-atmospheric shielding of Omani meteorites: Implications for 14C and 14C/10Be terrestrial ages of meteorites from hot and cold deserts

Cosmic ray exposure ages and pre-atmospheric shielding of Omani meteorites: Implications for 14C and 14C/10Be terrestrial ages of meteorites from hot and cold deserts

We present isotope concentrations of the light noble gases He and Ne for samples from five well-documented strewnfields and two individual meteorites from the Omani desert. Cosmogenic (22Ne/21Ne)cos for the strewnfield samples are low, as expected considering the total known masses. A (22Ne/21Ne)cos of 1.210 for the LL6 chondrite RaS 267 from Oman indicates a small pre-atmospheric size of less than 10 cm. The CRE ages for the Omani meteorites calculated using 21Necos range from 1 to 20 Ma. Using the (22Ne/21Ne)cos and previously established correlations, new shielding-corrected 14C and 14C-10Be terrestrial ages are calculated. For the strewnfield samples, the new ages are similar to the earlier ages but are more consistent. The new terrestrial age for RaS 267 is more than 20% lower than the previous age. Motivated by this success, we reinvestigated meteorites from other hot deserts (Acfer, Adrar, and Nullarbor regions) and Antarctica using literature data for 14C and (22Ne/21Ne)cos, along with the newly established correlations between 14C production rates and (22Ne/21Ne)cos. For these meteorites, the new terrestrial ages are systematically younger than the ages calculated earlier using a shielding-independent approach. Using shielding-corrected 14C terrestrial ages, the long-term puzzling problem that there is a lack of meteorites with short terrestrial ages disappears. The new histogram, though with only a limited number of data, shows the expected decrease in the number of meteorites with increasing terrestrial age. Therefore, the unexpected shape in the terrestrial age histogram was most likely due to a bias in the 14C dating system, that is, ages of small meteorites are overestimated.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Meteoritics & Planetary Science
Meteoritics & Planetary Science 地学天文-地球化学与地球物理
CiteScore
3.90
自引率
31.80%
发文量
121
审稿时长
3 months
期刊介绍: First issued in 1953, the journal publishes research articles describing the latest results of new studies, invited reviews of major topics in planetary science, editorials on issues of current interest in the field, and book reviews. The publications are original, not considered for publication elsewhere, and undergo peer-review. The topics include the origin and history of the solar system, planets and natural satellites, interplanetary dust and interstellar medium, lunar samples, meteors, and meteorites, asteroids, comets, craters, and tektites. Our authors and editors are professional scientists representing numerous disciplines, including astronomy, astrophysics, physics, geophysics, chemistry, isotope geochemistry, mineralogy, earth science, geology, and biology. MAPS has subscribers in over 40 countries. Fifty percent of MAPS'' readers are based outside the USA. The journal is available in hard copy and online.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信