原位聚合聚丁二酸丁二烯/有机改性蒙脱土纳米复合材料:低负荷增强熔体强度和机械性能

IF 2.8 3区 化学 Q2 POLYMER SCIENCE
Huihui Cao, Jiale Li, Guohe Xu, Siyu Du, Shaojie Zhang, Ruxia Guo
{"title":"原位聚合聚丁二酸丁二烯/有机改性蒙脱土纳米复合材料:低负荷增强熔体强度和机械性能","authors":"Huihui Cao,&nbsp;Jiale Li,&nbsp;Guohe Xu,&nbsp;Siyu Du,&nbsp;Shaojie Zhang,&nbsp;Ruxia Guo","doi":"10.1002/app.57604","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Poly(butylene succinate) (PBS)/organically modified montmorillonite (OMMT) nanocomposites are prepared via in situ polymerization with low OMMT loading (0.3 wt%). This study systematically compares pure PBS and melt-compounded PBS/OMMT nanocomposites. Investigation of OMMT loadings (0.1–0.7 wt%) reveals that 0.3 wt% OMMT yields the optimal property balance. Fourier transform infrared spectroscopy (FTIR) confirms the successful synthesis of both materials. X-ray diffraction (XRD) shows the expansion of OMMT interlayer spacing from 2.28 nm to 5.93 nm, forming an intercalated structure. Scanning electron microscopy (SEM) demonstrates uniform dispersion without agglomeration. Differential scanning calorimetry (DSC) indicates enhanced crystallization: crystallization temperature (<i>T</i>\n <sub>\n <i>c</i>\n </sub>) reaches 73.5°C, melting temperature (<i>T</i>\n <sub>\n <i>m</i>\n </sub>) 116.4°C, melting enthalpy (<i>ΔH</i>\n <sub>\n <i>m</i>\n </sub>) increases from 37.27 J·g<sup>−1</sup> to 58.74 J·g<sup>−1</sup>, and crystallinity (<i>X</i>\n <sub>\n <i>c-DSC</i>\n </sub>) rises to 53.16%. Polarized optical microscopy (POM) reveals refined spherulite size. Rheological tests show a melt flow rate (MFR) of 6.86 g·(10 min)<sup>−1</sup> with enhanced melt strength. Tensile strength reaches 37.57 MPa (2.2% higher than pure PBS) and elongation at break achieves 67.76% (498% higher than pure PBS; 42.9% higher than melt-blended nanocomposites). This study focuses on enhancing the melt strength and mechanical properties of PBS with low-content OMMT, facilitating its processing applications and providing a theoretical basis for fully biodegradable materials.</p>\n </div>","PeriodicalId":183,"journal":{"name":"Journal of Applied Polymer Science","volume":"142 41","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In Situ Polymerized Poly(Butylene Succinate)/Organically Modified Montmorillonite Nanocomposites: Low Loading for Enhanced Melt Strength and Mechanical Properties\",\"authors\":\"Huihui Cao,&nbsp;Jiale Li,&nbsp;Guohe Xu,&nbsp;Siyu Du,&nbsp;Shaojie Zhang,&nbsp;Ruxia Guo\",\"doi\":\"10.1002/app.57604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Poly(butylene succinate) (PBS)/organically modified montmorillonite (OMMT) nanocomposites are prepared via in situ polymerization with low OMMT loading (0.3 wt%). This study systematically compares pure PBS and melt-compounded PBS/OMMT nanocomposites. Investigation of OMMT loadings (0.1–0.7 wt%) reveals that 0.3 wt% OMMT yields the optimal property balance. Fourier transform infrared spectroscopy (FTIR) confirms the successful synthesis of both materials. X-ray diffraction (XRD) shows the expansion of OMMT interlayer spacing from 2.28 nm to 5.93 nm, forming an intercalated structure. Scanning electron microscopy (SEM) demonstrates uniform dispersion without agglomeration. Differential scanning calorimetry (DSC) indicates enhanced crystallization: crystallization temperature (<i>T</i>\\n <sub>\\n <i>c</i>\\n </sub>) reaches 73.5°C, melting temperature (<i>T</i>\\n <sub>\\n <i>m</i>\\n </sub>) 116.4°C, melting enthalpy (<i>ΔH</i>\\n <sub>\\n <i>m</i>\\n </sub>) increases from 37.27 J·g<sup>−1</sup> to 58.74 J·g<sup>−1</sup>, and crystallinity (<i>X</i>\\n <sub>\\n <i>c-DSC</i>\\n </sub>) rises to 53.16%. Polarized optical microscopy (POM) reveals refined spherulite size. Rheological tests show a melt flow rate (MFR) of 6.86 g·(10 min)<sup>−1</sup> with enhanced melt strength. Tensile strength reaches 37.57 MPa (2.2% higher than pure PBS) and elongation at break achieves 67.76% (498% higher than pure PBS; 42.9% higher than melt-blended nanocomposites). This study focuses on enhancing the melt strength and mechanical properties of PBS with low-content OMMT, facilitating its processing applications and providing a theoretical basis for fully biodegradable materials.</p>\\n </div>\",\"PeriodicalId\":183,\"journal\":{\"name\":\"Journal of Applied Polymer Science\",\"volume\":\"142 41\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/app.57604\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/app.57604","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

采用原位聚合法制备了聚丁二酸丁二烯(PBS)/有机改性蒙脱土(OMMT)纳米复合材料。本研究系统地比较了纯PBS和熔融复合PBS/OMMT纳米复合材料。对OMMT负载(0.1-0.7 wt%)的研究表明,0.3 wt%的OMMT可以产生最佳的性能平衡。傅里叶变换红外光谱(FTIR)证实了这两种材料的成功合成。x射线衍射(XRD)表明,OMMT层间间距从2.28 nm扩大到5.93 nm,形成了插层结构。扫描电镜(SEM)显示分散均匀,无团聚。差示扫描量热法(DSC)表明结晶增强,结晶温度(T c)达到73.5℃,熔化温度(T m)达到116.4℃,熔化焓(ΔH m)从37.27 J·g−1提高到58.74 J·g−1,结晶度(X c-DSC)提高到53.16%。偏光显微镜(POM)显示精细球晶尺寸。流变试验表明,熔体流动速率(MFR)为6.86 g·(10 min)−1,熔体强度增强。抗拉强度达到37.57 MPa(比纯PBS高2.2%),断裂伸长率达到67.76%(比纯PBS高498%,比熔融共混纳米复合材料高42.9%)。本研究的重点是通过低含量的OMMT提高PBS的熔体强度和力学性能,促进其加工应用,为完全生物降解材料提供理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

In Situ Polymerized Poly(Butylene Succinate)/Organically Modified Montmorillonite Nanocomposites: Low Loading for Enhanced Melt Strength and Mechanical Properties

In Situ Polymerized Poly(Butylene Succinate)/Organically Modified Montmorillonite Nanocomposites: Low Loading for Enhanced Melt Strength and Mechanical Properties

Poly(butylene succinate) (PBS)/organically modified montmorillonite (OMMT) nanocomposites are prepared via in situ polymerization with low OMMT loading (0.3 wt%). This study systematically compares pure PBS and melt-compounded PBS/OMMT nanocomposites. Investigation of OMMT loadings (0.1–0.7 wt%) reveals that 0.3 wt% OMMT yields the optimal property balance. Fourier transform infrared spectroscopy (FTIR) confirms the successful synthesis of both materials. X-ray diffraction (XRD) shows the expansion of OMMT interlayer spacing from 2.28 nm to 5.93 nm, forming an intercalated structure. Scanning electron microscopy (SEM) demonstrates uniform dispersion without agglomeration. Differential scanning calorimetry (DSC) indicates enhanced crystallization: crystallization temperature (T c ) reaches 73.5°C, melting temperature (T m ) 116.4°C, melting enthalpy (ΔH m ) increases from 37.27 J·g−1 to 58.74 J·g−1, and crystallinity (X c-DSC ) rises to 53.16%. Polarized optical microscopy (POM) reveals refined spherulite size. Rheological tests show a melt flow rate (MFR) of 6.86 g·(10 min)−1 with enhanced melt strength. Tensile strength reaches 37.57 MPa (2.2% higher than pure PBS) and elongation at break achieves 67.76% (498% higher than pure PBS; 42.9% higher than melt-blended nanocomposites). This study focuses on enhancing the melt strength and mechanical properties of PBS with low-content OMMT, facilitating its processing applications and providing a theoretical basis for fully biodegradable materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Polymer Science
Journal of Applied Polymer Science 化学-高分子科学
CiteScore
5.70
自引率
10.00%
发文量
1280
审稿时长
2.7 months
期刊介绍: The Journal of Applied Polymer Science is the largest peer-reviewed publication in polymers, #3 by total citations, and features results with real-world impact on membranes, polysaccharides, and much more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信