F.-J. Haug, A. Morisset, M. Lehmann, S. Libraro, E. Genç, J. Hurni, C. Ballif
{"title":"快速热处理对钝化隧道氧化触点晶体硅整体寿命和表面复合速度的影响","authors":"F.-J. Haug, A. Morisset, M. Lehmann, S. Libraro, E. Genç, J. Hurni, C. Ballif","doi":"10.1002/pip.3894","DOIUrl":null,"url":null,"abstract":"<p>We investigate rapid thermal processing (RTP) as alternative to the prolonged thermal annealing process used to form tunnel-oxide passivating contacts for silicon solar cells. The thermal treatment is generally followed by hydrogenation to passivate defects at the Si/SiOx interface. Whereas industrial manufacturing generally uses Cz wafers, research is often carried out with FZ wafers. Both types of wafers are prone to the formation of thermal defects in the bulk. To disentangle effects of the interface and the bulk, we assess the lifetime at different steps of the process sequence for both wafer types. We find that the initial bulk lifetime of our <i>p</i>-type FZ material is maintained for RTP up to temperatures of about 450°C, followed by a severe decay and eventually a moderate extent of recovery at temperatures above 800°C. Compared to FZ material, the initial bulk lifetimes in our <i>p</i>-type Cz material are slightly lower, but they are maintained on that level up to about 600°C. Beyond that temperature, the lifetimes also decay, but to a lesser extent than in the FZ material, and there is no curing at higher temperatures. Hydrogenation can partially passivate the bulk defects in FZ material, but the initial state is not recovered. In Cz material, it appears that RTP creates two different types of defects; for those created up to 800°C, the initial state can be recovered by hydrogenation whereas those created at higher temperature cannot be passivated by hydrogenation. We also investigate the formation of <i>n</i>-type passivating contacts by RTP, and we fabricate solar cell precursors with a single RTP step and the same hydrogenation for both contact polarities. After sputtering a transparent conducting ITO layer on the full area and an Ag metallization, we achieve solar cells efficiencies up to 20.5%.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"33 9","pages":"954-961"},"PeriodicalIF":7.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3894","citationCount":"0","resultStr":"{\"title\":\"Impact of Rapid Thermal Processing on Bulk Lifetime and Surface Recombination Velocity of Crystalline Silicon With Passivating Tunnel Oxide Contacts\",\"authors\":\"F.-J. Haug, A. Morisset, M. Lehmann, S. Libraro, E. Genç, J. Hurni, C. Ballif\",\"doi\":\"10.1002/pip.3894\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate rapid thermal processing (RTP) as alternative to the prolonged thermal annealing process used to form tunnel-oxide passivating contacts for silicon solar cells. The thermal treatment is generally followed by hydrogenation to passivate defects at the Si/SiOx interface. Whereas industrial manufacturing generally uses Cz wafers, research is often carried out with FZ wafers. Both types of wafers are prone to the formation of thermal defects in the bulk. To disentangle effects of the interface and the bulk, we assess the lifetime at different steps of the process sequence for both wafer types. We find that the initial bulk lifetime of our <i>p</i>-type FZ material is maintained for RTP up to temperatures of about 450°C, followed by a severe decay and eventually a moderate extent of recovery at temperatures above 800°C. Compared to FZ material, the initial bulk lifetimes in our <i>p</i>-type Cz material are slightly lower, but they are maintained on that level up to about 600°C. Beyond that temperature, the lifetimes also decay, but to a lesser extent than in the FZ material, and there is no curing at higher temperatures. Hydrogenation can partially passivate the bulk defects in FZ material, but the initial state is not recovered. In Cz material, it appears that RTP creates two different types of defects; for those created up to 800°C, the initial state can be recovered by hydrogenation whereas those created at higher temperature cannot be passivated by hydrogenation. We also investigate the formation of <i>n</i>-type passivating contacts by RTP, and we fabricate solar cell precursors with a single RTP step and the same hydrogenation for both contact polarities. After sputtering a transparent conducting ITO layer on the full area and an Ag metallization, we achieve solar cells efficiencies up to 20.5%.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"33 9\",\"pages\":\"954-961\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3894\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3894\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3894","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Impact of Rapid Thermal Processing on Bulk Lifetime and Surface Recombination Velocity of Crystalline Silicon With Passivating Tunnel Oxide Contacts
We investigate rapid thermal processing (RTP) as alternative to the prolonged thermal annealing process used to form tunnel-oxide passivating contacts for silicon solar cells. The thermal treatment is generally followed by hydrogenation to passivate defects at the Si/SiOx interface. Whereas industrial manufacturing generally uses Cz wafers, research is often carried out with FZ wafers. Both types of wafers are prone to the formation of thermal defects in the bulk. To disentangle effects of the interface and the bulk, we assess the lifetime at different steps of the process sequence for both wafer types. We find that the initial bulk lifetime of our p-type FZ material is maintained for RTP up to temperatures of about 450°C, followed by a severe decay and eventually a moderate extent of recovery at temperatures above 800°C. Compared to FZ material, the initial bulk lifetimes in our p-type Cz material are slightly lower, but they are maintained on that level up to about 600°C. Beyond that temperature, the lifetimes also decay, but to a lesser extent than in the FZ material, and there is no curing at higher temperatures. Hydrogenation can partially passivate the bulk defects in FZ material, but the initial state is not recovered. In Cz material, it appears that RTP creates two different types of defects; for those created up to 800°C, the initial state can be recovered by hydrogenation whereas those created at higher temperature cannot be passivated by hydrogenation. We also investigate the formation of n-type passivating contacts by RTP, and we fabricate solar cell precursors with a single RTP step and the same hydrogenation for both contact polarities. After sputtering a transparent conducting ITO layer on the full area and an Ag metallization, we achieve solar cells efficiencies up to 20.5%.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.