{"title":"基于SYBR绿色的可食植物小葱与有毒植物野缬草实时荧光定量PCR鉴别方法的建立及其应用","authors":"Su Yeon Kim, Cheol Seong Jang","doi":"10.1186/s13765-025-01032-7","DOIUrl":null,"url":null,"abstract":"<div><p>Consumption of wild plants is a common practice globally; however, not all plants are safe for human consumption, as some are toxic. Toxic plants often resemble edible species, which makes their identification difficult, particularly for non-experts. <i>Convallaria majalis</i>, a poisonous plant containing cardiac glycosides, poses a significant danger if mistakenly ingested. <i>Allium microdictyon</i> is a popular edible wild vegetable in East Asia. Owing to their similar appearance, accidental mixing can occur during harvesting or processing<i>.</i> In this study, specific primer pairs were designed to target chloroplast genes to distinguish the edible plant <i>Allium microdictyon</i> from the toxic plant <i>Convallaria majalis</i>, and their practicality was tested. The specificity, sensitivity, and applicability of the quantitative real-time PCR assay were evaluated using all primer pairs. Six primer sets (three for <i>A. microdictyon</i> and three for <i>C. majalis</i>) exhibited strong linearity, with correlation coefficients exceeding 0.98 and slopes ranging from − 3.22 to − 3.56. PCR efficiencies ranged from 90.80% to 97.85%. Cycle threshold (Ct) values corresponding to 0.1% of the binary mixture were used as the cut-off values. Additionally, the specificity of the primer pairs was validated by analyzing 13 non-target plant species and assessed for practicality using 15 commercial samples. The developed primer pairs will aid in preventing the misidentification of toxic wild plants and serve to guide the identification of toxic species, thereby contributing to public health and safety.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"68 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-01032-7","citationCount":"0","resultStr":"{\"title\":\"Development of a SYBR green-based real-time PCR assay for distinguishing the edible plant Allium microdictyon from the toxic plant Convallaria majalis and its application\",\"authors\":\"Su Yeon Kim, Cheol Seong Jang\",\"doi\":\"10.1186/s13765-025-01032-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consumption of wild plants is a common practice globally; however, not all plants are safe for human consumption, as some are toxic. Toxic plants often resemble edible species, which makes their identification difficult, particularly for non-experts. <i>Convallaria majalis</i>, a poisonous plant containing cardiac glycosides, poses a significant danger if mistakenly ingested. <i>Allium microdictyon</i> is a popular edible wild vegetable in East Asia. Owing to their similar appearance, accidental mixing can occur during harvesting or processing<i>.</i> In this study, specific primer pairs were designed to target chloroplast genes to distinguish the edible plant <i>Allium microdictyon</i> from the toxic plant <i>Convallaria majalis</i>, and their practicality was tested. The specificity, sensitivity, and applicability of the quantitative real-time PCR assay were evaluated using all primer pairs. Six primer sets (three for <i>A. microdictyon</i> and three for <i>C. majalis</i>) exhibited strong linearity, with correlation coefficients exceeding 0.98 and slopes ranging from − 3.22 to − 3.56. PCR efficiencies ranged from 90.80% to 97.85%. Cycle threshold (Ct) values corresponding to 0.1% of the binary mixture were used as the cut-off values. Additionally, the specificity of the primer pairs was validated by analyzing 13 non-target plant species and assessed for practicality using 15 commercial samples. The developed primer pairs will aid in preventing the misidentification of toxic wild plants and serve to guide the identification of toxic species, thereby contributing to public health and safety.</p></div>\",\"PeriodicalId\":467,\"journal\":{\"name\":\"Applied Biological Chemistry\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-025-01032-7\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biological Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13765-025-01032-7\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-025-01032-7","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Development of a SYBR green-based real-time PCR assay for distinguishing the edible plant Allium microdictyon from the toxic plant Convallaria majalis and its application
Consumption of wild plants is a common practice globally; however, not all plants are safe for human consumption, as some are toxic. Toxic plants often resemble edible species, which makes their identification difficult, particularly for non-experts. Convallaria majalis, a poisonous plant containing cardiac glycosides, poses a significant danger if mistakenly ingested. Allium microdictyon is a popular edible wild vegetable in East Asia. Owing to their similar appearance, accidental mixing can occur during harvesting or processing. In this study, specific primer pairs were designed to target chloroplast genes to distinguish the edible plant Allium microdictyon from the toxic plant Convallaria majalis, and their practicality was tested. The specificity, sensitivity, and applicability of the quantitative real-time PCR assay were evaluated using all primer pairs. Six primer sets (three for A. microdictyon and three for C. majalis) exhibited strong linearity, with correlation coefficients exceeding 0.98 and slopes ranging from − 3.22 to − 3.56. PCR efficiencies ranged from 90.80% to 97.85%. Cycle threshold (Ct) values corresponding to 0.1% of the binary mixture were used as the cut-off values. Additionally, the specificity of the primer pairs was validated by analyzing 13 non-target plant species and assessed for practicality using 15 commercial samples. The developed primer pairs will aid in preventing the misidentification of toxic wild plants and serve to guide the identification of toxic species, thereby contributing to public health and safety.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.