{"title":"RNA n6 -甲基腺苷在植物中的分子机制及作物改良潜力","authors":"Diyi Fu, Huiyuan Wang, Bochen Jiang","doi":"10.1007/s42994-025-00228-1","DOIUrl":null,"url":null,"abstract":"<div><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most prevalent internal modification in eukaryotic mRNAs and contributes to the post-transcriptional regulation of gene expression. In plants, m<sup>6</sup>A modulates RNA splicing, stability, and translation, thereby influencing developmental processes and responses to environmental stimuli. This review systematically examines current advances in the understanding of m<sup>6</sup>A regulation in plants. We begin with an overview of the m<sup>6</sup>A modification and its associated regulatory machinery, including the writers (methyltransferases), erasers (demethylases), and readers (m<sup>6</sup>A-binding proteins) components, and discuss their roles in orchestrating RNA metabolism and determining plant phenotypes. Subsequent sections focus on the functional implications of m<sup>6</sup>A in economically important crops, with evidence drawn from model systems such as <i>Arabidopsis thaliana</i> and key species including rice (<i>Oryza sativa</i>), tomato (<i>Solanum lycopersicum</i>), and strawberry (<i>Fragaria vesca</i>), where m<sup>6</sup>A modifications have been linked to traits such as yield, maturation, and aroma. Finally, we explore emerging biotechnological strategies that harness m<sup>6</sup>A-mediated regulatory pathways to enhance crop quality, such as overexpression of human <i>FTO</i> encoding an m<sup>6</sup>A demethylase, quantitative m<sup>6</sup>A profiling at single-base resolution, CRISPR/Cas13-targeted m<sup>6</sup>A regulation, the application of small-molecule inhibitors, and m<sup>6</sup>A-driven multi-omics integration. These strategies provide a comprehensive framework for understanding the multifaceted roles of m<sup>6</sup>A in plant biology and underscore the potential of this modification as a target for next-generation crop improvement.</p></div>","PeriodicalId":53135,"journal":{"name":"aBIOTECH","volume":"6 3","pages":"489 - 509"},"PeriodicalIF":5.0000,"publicationDate":"2025-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s42994-025-00228-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Molecular mechanisms and crop improvement potential of RNA N6-methyladenosine in plants\",\"authors\":\"Diyi Fu, Huiyuan Wang, Bochen Jiang\",\"doi\":\"10.1007/s42994-025-00228-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) is the most prevalent internal modification in eukaryotic mRNAs and contributes to the post-transcriptional regulation of gene expression. In plants, m<sup>6</sup>A modulates RNA splicing, stability, and translation, thereby influencing developmental processes and responses to environmental stimuli. This review systematically examines current advances in the understanding of m<sup>6</sup>A regulation in plants. We begin with an overview of the m<sup>6</sup>A modification and its associated regulatory machinery, including the writers (methyltransferases), erasers (demethylases), and readers (m<sup>6</sup>A-binding proteins) components, and discuss their roles in orchestrating RNA metabolism and determining plant phenotypes. Subsequent sections focus on the functional implications of m<sup>6</sup>A in economically important crops, with evidence drawn from model systems such as <i>Arabidopsis thaliana</i> and key species including rice (<i>Oryza sativa</i>), tomato (<i>Solanum lycopersicum</i>), and strawberry (<i>Fragaria vesca</i>), where m<sup>6</sup>A modifications have been linked to traits such as yield, maturation, and aroma. Finally, we explore emerging biotechnological strategies that harness m<sup>6</sup>A-mediated regulatory pathways to enhance crop quality, such as overexpression of human <i>FTO</i> encoding an m<sup>6</sup>A demethylase, quantitative m<sup>6</sup>A profiling at single-base resolution, CRISPR/Cas13-targeted m<sup>6</sup>A regulation, the application of small-molecule inhibitors, and m<sup>6</sup>A-driven multi-omics integration. These strategies provide a comprehensive framework for understanding the multifaceted roles of m<sup>6</sup>A in plant biology and underscore the potential of this modification as a target for next-generation crop improvement.</p></div>\",\"PeriodicalId\":53135,\"journal\":{\"name\":\"aBIOTECH\",\"volume\":\"6 3\",\"pages\":\"489 - 509\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s42994-025-00228-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"aBIOTECH\",\"FirstCategoryId\":\"1091\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42994-025-00228-1\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"aBIOTECH","FirstCategoryId":"1091","ListUrlMain":"https://link.springer.com/article/10.1007/s42994-025-00228-1","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Molecular mechanisms and crop improvement potential of RNA N6-methyladenosine in plants
N6-methyladenosine (m6A) is the most prevalent internal modification in eukaryotic mRNAs and contributes to the post-transcriptional regulation of gene expression. In plants, m6A modulates RNA splicing, stability, and translation, thereby influencing developmental processes and responses to environmental stimuli. This review systematically examines current advances in the understanding of m6A regulation in plants. We begin with an overview of the m6A modification and its associated regulatory machinery, including the writers (methyltransferases), erasers (demethylases), and readers (m6A-binding proteins) components, and discuss their roles in orchestrating RNA metabolism and determining plant phenotypes. Subsequent sections focus on the functional implications of m6A in economically important crops, with evidence drawn from model systems such as Arabidopsis thaliana and key species including rice (Oryza sativa), tomato (Solanum lycopersicum), and strawberry (Fragaria vesca), where m6A modifications have been linked to traits such as yield, maturation, and aroma. Finally, we explore emerging biotechnological strategies that harness m6A-mediated regulatory pathways to enhance crop quality, such as overexpression of human FTO encoding an m6A demethylase, quantitative m6A profiling at single-base resolution, CRISPR/Cas13-targeted m6A regulation, the application of small-molecule inhibitors, and m6A-driven multi-omics integration. These strategies provide a comprehensive framework for understanding the multifaceted roles of m6A in plant biology and underscore the potential of this modification as a target for next-generation crop improvement.