Jeong Hyeon Kim, Min Jae Hwang, Ha Yoon Jo, So Yeon Choi, Seong Hyeon Park, Haneol Lee
{"title":"用于饮料中微塑料检测的便携式表面声波传感器系统","authors":"Jeong Hyeon Kim, Min Jae Hwang, Ha Yoon Jo, So Yeon Choi, Seong Hyeon Park, Haneol Lee","doi":"10.1186/s40486-025-00236-2","DOIUrl":null,"url":null,"abstract":"<div><p>The escalating global plastic production (~ 390 million tons in 2022) and subsequent environmental release of microplastics necessitate urgent advancements in real-time detection technologies. While optical methods (Raman spectroscopy, FTIR) dominate current microplastic analysis, their reliance on bulky instrumentation limits field applications. This study presents a portable surface acoustic wave (SAW) sensor system for real-time microplastic detection in beverages. A biocompatible aluminum interdigital transducer (IDT) array (40 pairs, 30 μm gap) was fabricated on piezoelectric substrates (InGaN and PMN-PT), with SU-8 passivation selectively exposing sensing regions to minimize liquid-phase interference. Material characterization confirmed substrate crystallinity and composition, revealing InGaN’s superior sensitivity, estimated to be ~ 0.168 MHz/(mg/mL) than the PMN-PT-based device. The integrated system employs an InGaN-based oscillator circuit resonating at 39.06 MHz, enabling standalone operation without external signal generators. A threshold-driven LED interface (red/green for ≥ / < 0.25 mg) provides intuitive readouts, while universal printed circuit board (PCB) integration ensures portability. This work demonstrates a scalable platform for on-site microplastic monitoring, addressing critical gaps in consumer safety and environmental health.</p></div>","PeriodicalId":704,"journal":{"name":"Micro and Nano Systems Letters","volume":"13 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-025-00236-2","citationCount":"0","resultStr":"{\"title\":\"Portable surface acoustic wave sensor systems for microplastic detection in beverages\",\"authors\":\"Jeong Hyeon Kim, Min Jae Hwang, Ha Yoon Jo, So Yeon Choi, Seong Hyeon Park, Haneol Lee\",\"doi\":\"10.1186/s40486-025-00236-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The escalating global plastic production (~ 390 million tons in 2022) and subsequent environmental release of microplastics necessitate urgent advancements in real-time detection technologies. While optical methods (Raman spectroscopy, FTIR) dominate current microplastic analysis, their reliance on bulky instrumentation limits field applications. This study presents a portable surface acoustic wave (SAW) sensor system for real-time microplastic detection in beverages. A biocompatible aluminum interdigital transducer (IDT) array (40 pairs, 30 μm gap) was fabricated on piezoelectric substrates (InGaN and PMN-PT), with SU-8 passivation selectively exposing sensing regions to minimize liquid-phase interference. Material characterization confirmed substrate crystallinity and composition, revealing InGaN’s superior sensitivity, estimated to be ~ 0.168 MHz/(mg/mL) than the PMN-PT-based device. The integrated system employs an InGaN-based oscillator circuit resonating at 39.06 MHz, enabling standalone operation without external signal generators. A threshold-driven LED interface (red/green for ≥ / < 0.25 mg) provides intuitive readouts, while universal printed circuit board (PCB) integration ensures portability. This work demonstrates a scalable platform for on-site microplastic monitoring, addressing critical gaps in consumer safety and environmental health.</p></div>\",\"PeriodicalId\":704,\"journal\":{\"name\":\"Micro and Nano Systems Letters\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://mnsl-journal.springeropen.com/counter/pdf/10.1186/s40486-025-00236-2\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nano Systems Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s40486-025-00236-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NANOSCIENCE & NANOTECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nano Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s40486-025-00236-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
Portable surface acoustic wave sensor systems for microplastic detection in beverages
The escalating global plastic production (~ 390 million tons in 2022) and subsequent environmental release of microplastics necessitate urgent advancements in real-time detection technologies. While optical methods (Raman spectroscopy, FTIR) dominate current microplastic analysis, their reliance on bulky instrumentation limits field applications. This study presents a portable surface acoustic wave (SAW) sensor system for real-time microplastic detection in beverages. A biocompatible aluminum interdigital transducer (IDT) array (40 pairs, 30 μm gap) was fabricated on piezoelectric substrates (InGaN and PMN-PT), with SU-8 passivation selectively exposing sensing regions to minimize liquid-phase interference. Material characterization confirmed substrate crystallinity and composition, revealing InGaN’s superior sensitivity, estimated to be ~ 0.168 MHz/(mg/mL) than the PMN-PT-based device. The integrated system employs an InGaN-based oscillator circuit resonating at 39.06 MHz, enabling standalone operation without external signal generators. A threshold-driven LED interface (red/green for ≥ / < 0.25 mg) provides intuitive readouts, while universal printed circuit board (PCB) integration ensures portability. This work demonstrates a scalable platform for on-site microplastic monitoring, addressing critical gaps in consumer safety and environmental health.