连续时间切换系统的统一非保守稳定性条件

IF 8.7 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Hui-Ting Wang;Songlin Zhuang;Yong He;Yang Shi;Min Wu
{"title":"连续时间切换系统的统一非保守稳定性条件","authors":"Hui-Ting Wang;Songlin Zhuang;Yong He;Yang Shi;Min Wu","doi":"10.1109/TSMC.2025.3580361","DOIUrl":null,"url":null,"abstract":"This article studies nonconservative stability conditions of continuous-time switched linear systems under mode-dependent dwell time (MDT). To establish a unified analysis approach for switched systems with stable and/or unstable subsystems, a concept called “dictionary” is introduced to characterize admissible MDT switching sequences. Subsequently, two equivalent nonconservative conditions of the global uniform asymptotic stability (GUAS) are obtained based on quadratic Lyapunov functions (LFs). Moreover, the stability results are transformed into convex conditions for facilitating the controller design. In addition, the developed stability results are applied to <inline-formula> <tex-math>$L_{2}$ </tex-math></inline-formula>-gain analysis and <inline-formula> <tex-math>$H_{\\infty }$ </tex-math></inline-formula> controller design for the continuous-time switched linear system subject to external disturbances. Simulations are provided to validate the effectiveness and the superiority over existing results.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 10","pages":"6671-6683"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unified and Nonconservative Stability Conditions for Continuous-Time Switched Systems\",\"authors\":\"Hui-Ting Wang;Songlin Zhuang;Yong He;Yang Shi;Min Wu\",\"doi\":\"10.1109/TSMC.2025.3580361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article studies nonconservative stability conditions of continuous-time switched linear systems under mode-dependent dwell time (MDT). To establish a unified analysis approach for switched systems with stable and/or unstable subsystems, a concept called “dictionary” is introduced to characterize admissible MDT switching sequences. Subsequently, two equivalent nonconservative conditions of the global uniform asymptotic stability (GUAS) are obtained based on quadratic Lyapunov functions (LFs). Moreover, the stability results are transformed into convex conditions for facilitating the controller design. In addition, the developed stability results are applied to <inline-formula> <tex-math>$L_{2}$ </tex-math></inline-formula>-gain analysis and <inline-formula> <tex-math>$H_{\\\\infty }$ </tex-math></inline-formula> controller design for the continuous-time switched linear system subject to external disturbances. Simulations are provided to validate the effectiveness and the superiority over existing results.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":\"55 10\",\"pages\":\"6671-6683\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11073076/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11073076/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

研究了模相关停留时间下连续时间切换线性系统的非保守稳定性条件。为了建立具有稳定和/或不稳定子系统的切换系统的统一分析方法,引入了“字典”的概念来表征可容许的MDT切换序列。然后,基于二次Lyapunov函数,得到了全局一致渐近稳定(GUAS)的两个等效非保守条件。并将稳定性结果转化为凸条件,便于控制器的设计。此外,所开发的稳定性结果可用于受外部干扰的连续时间切换线性系统的$L_{2}$ -增益分析和$H_{\infty }$控制器设计。仿真结果验证了该方法的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unified and Nonconservative Stability Conditions for Continuous-Time Switched Systems
This article studies nonconservative stability conditions of continuous-time switched linear systems under mode-dependent dwell time (MDT). To establish a unified analysis approach for switched systems with stable and/or unstable subsystems, a concept called “dictionary” is introduced to characterize admissible MDT switching sequences. Subsequently, two equivalent nonconservative conditions of the global uniform asymptotic stability (GUAS) are obtained based on quadratic Lyapunov functions (LFs). Moreover, the stability results are transformed into convex conditions for facilitating the controller design. In addition, the developed stability results are applied to $L_{2}$ -gain analysis and $H_{\infty }$ controller design for the continuous-time switched linear system subject to external disturbances. Simulations are provided to validate the effectiveness and the superiority over existing results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信