未知二自由度直升机系统基于强化动态学习的跟踪控制策略

IF 8.7 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Weitian He;Fukai Zhang;Zhijia Zhao;Chenguang Yang;Cong Wang
{"title":"未知二自由度直升机系统基于强化动态学习的跟踪控制策略","authors":"Weitian He;Fukai Zhang;Zhijia Zhao;Chenguang Yang;Cong Wang","doi":"10.1109/TSMC.2025.3582830","DOIUrl":null,"url":null,"abstract":"This study investigates a multitrajectory tracking control strategy for an unknown 2-DOF helicopter system, integrating deterministic learning (DL) and reinforcement learning (RL). Initially, DL theory is applied to identify the local unknown dynamics of a 2-DOF helicopter system using radial basis function neural networks (RBFNNs). Subsequently, the identified dynamic knowledge is expressed and stored using constant RBFNNs. To mitigate the issue of partial knowledge failure due to deviations between the actual and learned trajectories, we introduce a RL framework for dynamic compensation. Finally, a composite control strategy incorporating both nominal and auxiliary components is designed to achieve multitrajectory tracking control. The stability of the closed-loop system is analyzed and demonstrated using the Lyapunov direct method. The simulation and experimental results demonstrate the effectiveness of the proposed control strategy.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 10","pages":"6777-6788"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Dynamic Learning-Based Tracking Control Strategy for an Unknown 2-DOF Helicopter System\",\"authors\":\"Weitian He;Fukai Zhang;Zhijia Zhao;Chenguang Yang;Cong Wang\",\"doi\":\"10.1109/TSMC.2025.3582830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates a multitrajectory tracking control strategy for an unknown 2-DOF helicopter system, integrating deterministic learning (DL) and reinforcement learning (RL). Initially, DL theory is applied to identify the local unknown dynamics of a 2-DOF helicopter system using radial basis function neural networks (RBFNNs). Subsequently, the identified dynamic knowledge is expressed and stored using constant RBFNNs. To mitigate the issue of partial knowledge failure due to deviations between the actual and learned trajectories, we introduce a RL framework for dynamic compensation. Finally, a composite control strategy incorporating both nominal and auxiliary components is designed to achieve multitrajectory tracking control. The stability of the closed-loop system is analyzed and demonstrated using the Lyapunov direct method. The simulation and experimental results demonstrate the effectiveness of the proposed control strategy.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":\"55 10\",\"pages\":\"6777-6788\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11084854/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11084854/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一种基于确定性学习(DL)和强化学习(RL)的未知二自由度直升机多轨迹跟踪控制策略。首先,利用径向基函数神经网络(RBFNNs)将深度学习理论应用于二自由度直升机系统的局部未知动力学辨识。随后,使用恒定rbfnn表示和存储识别出的动态知识。为了缓解由于实际轨迹和学习轨迹之间的偏差而导致的部分知识失效问题,我们引入了一个动态补偿的强化学习框架。最后,设计了标称控制和辅助控制相结合的复合控制策略,实现了多轨迹跟踪控制。利用李雅普诺夫直接法对闭环系统的稳定性进行了分析和论证。仿真和实验结果验证了所提控制策略的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Dynamic Learning-Based Tracking Control Strategy for an Unknown 2-DOF Helicopter System
This study investigates a multitrajectory tracking control strategy for an unknown 2-DOF helicopter system, integrating deterministic learning (DL) and reinforcement learning (RL). Initially, DL theory is applied to identify the local unknown dynamics of a 2-DOF helicopter system using radial basis function neural networks (RBFNNs). Subsequently, the identified dynamic knowledge is expressed and stored using constant RBFNNs. To mitigate the issue of partial knowledge failure due to deviations between the actual and learned trajectories, we introduce a RL framework for dynamic compensation. Finally, a composite control strategy incorporating both nominal and auxiliary components is designed to achieve multitrajectory tracking control. The stability of the closed-loop system is analyzed and demonstrated using the Lyapunov direct method. The simulation and experimental results demonstrate the effectiveness of the proposed control strategy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信