{"title":"非对称决策中的智能控制:一种不匹配不确定性的事件触发强化学习方法","authors":"Xiangnan Zhong;Zhen Ni","doi":"10.1109/TSMC.2025.3583066","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI)-based multiplayer systems have attracted increasing attention across diverse fields. While most research focuses on simultaneous-move multiplayer games to achieve Nash equilibrium, there are complex applications that involve hierarchical decision-making, where certain players act before others. This power asymmetry increases the complexity of strategic interactions, especially in the presence of mismatched uncertainties that can compromise data reliability and decision-making. To this end, this article develops a novel event-triggered reinforcement learning (RL) approach for hierarchical multiplayer systems with mismatched uncertainties. Specifically, by establishing an auxiliary augment system and designing appropriate cost functions for the high-level leader and low-level followers, we reformulate the hierarchical robust control problem as an optimization task within the Stackelberg–Nash game framework. Furthermore, an event-triggered scheme is designed to reduce the computational overhead and a neural-RL-based method is developed to automatically learn the event-triggered control policies for hierarchical players. Theoretical analyses are conducted to 1) demonstrate the stability preservation of the designed robust-optimal transformation; 2) verify the achievement of Stackelberg–Nash equilibrium under the developed event-triggered policies; and 3) guarantee the boundedness of the impulsive closed-loop system. Finally, the simulation studies validate the effectiveness of the developed method.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 10","pages":"7288-7301"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intelligent Control in Asymmetric Decision-Making: An Event-Triggered RL Approach for Mismatched Uncertainties\",\"authors\":\"Xiangnan Zhong;Zhen Ni\",\"doi\":\"10.1109/TSMC.2025.3583066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Artificial intelligence (AI)-based multiplayer systems have attracted increasing attention across diverse fields. While most research focuses on simultaneous-move multiplayer games to achieve Nash equilibrium, there are complex applications that involve hierarchical decision-making, where certain players act before others. This power asymmetry increases the complexity of strategic interactions, especially in the presence of mismatched uncertainties that can compromise data reliability and decision-making. To this end, this article develops a novel event-triggered reinforcement learning (RL) approach for hierarchical multiplayer systems with mismatched uncertainties. Specifically, by establishing an auxiliary augment system and designing appropriate cost functions for the high-level leader and low-level followers, we reformulate the hierarchical robust control problem as an optimization task within the Stackelberg–Nash game framework. Furthermore, an event-triggered scheme is designed to reduce the computational overhead and a neural-RL-based method is developed to automatically learn the event-triggered control policies for hierarchical players. Theoretical analyses are conducted to 1) demonstrate the stability preservation of the designed robust-optimal transformation; 2) verify the achievement of Stackelberg–Nash equilibrium under the developed event-triggered policies; and 3) guarantee the boundedness of the impulsive closed-loop system. Finally, the simulation studies validate the effectiveness of the developed method.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":\"55 10\",\"pages\":\"7288-7301\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11074753/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11074753/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Intelligent Control in Asymmetric Decision-Making: An Event-Triggered RL Approach for Mismatched Uncertainties
Artificial intelligence (AI)-based multiplayer systems have attracted increasing attention across diverse fields. While most research focuses on simultaneous-move multiplayer games to achieve Nash equilibrium, there are complex applications that involve hierarchical decision-making, where certain players act before others. This power asymmetry increases the complexity of strategic interactions, especially in the presence of mismatched uncertainties that can compromise data reliability and decision-making. To this end, this article develops a novel event-triggered reinforcement learning (RL) approach for hierarchical multiplayer systems with mismatched uncertainties. Specifically, by establishing an auxiliary augment system and designing appropriate cost functions for the high-level leader and low-level followers, we reformulate the hierarchical robust control problem as an optimization task within the Stackelberg–Nash game framework. Furthermore, an event-triggered scheme is designed to reduce the computational overhead and a neural-RL-based method is developed to automatically learn the event-triggered control policies for hierarchical players. Theoretical analyses are conducted to 1) demonstrate the stability preservation of the designed robust-optimal transformation; 2) verify the achievement of Stackelberg–Nash equilibrium under the developed event-triggered policies; and 3) guarantee the boundedness of the impulsive closed-loop system. Finally, the simulation studies validate the effectiveness of the developed method.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.