基于图的多模态语义通信中高效压缩的多级相似度

IF 4.4 3区 计算机科学 Q2 TELECOMMUNICATIONS
Chenlin Xing;Jie Lv;Tao Luo;Zhilong Zhang
{"title":"基于图的多模态语义通信中高效压缩的多级相似度","authors":"Chenlin Xing;Jie Lv;Tao Luo;Zhilong Zhang","doi":"10.1109/LCOMM.2025.3585892","DOIUrl":null,"url":null,"abstract":"Efficient and accurate multi-modal data transmission remains a key challenge in semantic communications. Existing research has overlooked the multi-level semantic similarity inherent in multi-modal data. Motivated by this, a graph-based multi-modal semantic communication system (GMSC) is proposed. In GMSC, triplets fully correlate intra-modal and cross-modal semantic similarities, enabling the integrated extraction of redundant semantic information. A task-oriented compression threshold method is designed to remove redundant transmission information and enhance efficiency. Simulation results demonstrate that GMSC achieves a 7% improvement in task accuracy at the same compression threshold and significantly improves transmission efficiency under the same task accuracy.","PeriodicalId":13197,"journal":{"name":"IEEE Communications Letters","volume":"29 9","pages":"2078-2082"},"PeriodicalIF":4.4000,"publicationDate":"2025-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-Level Similarity for Efficient Compression in Graph-Based Multi-Modal Semantic Communication\",\"authors\":\"Chenlin Xing;Jie Lv;Tao Luo;Zhilong Zhang\",\"doi\":\"10.1109/LCOMM.2025.3585892\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient and accurate multi-modal data transmission remains a key challenge in semantic communications. Existing research has overlooked the multi-level semantic similarity inherent in multi-modal data. Motivated by this, a graph-based multi-modal semantic communication system (GMSC) is proposed. In GMSC, triplets fully correlate intra-modal and cross-modal semantic similarities, enabling the integrated extraction of redundant semantic information. A task-oriented compression threshold method is designed to remove redundant transmission information and enhance efficiency. Simulation results demonstrate that GMSC achieves a 7% improvement in task accuracy at the same compression threshold and significantly improves transmission efficiency under the same task accuracy.\",\"PeriodicalId\":13197,\"journal\":{\"name\":\"IEEE Communications Letters\",\"volume\":\"29 9\",\"pages\":\"2078-2082\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11071907/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11071907/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

高效、准确的多模态数据传输仍然是语义通信中的一个关键挑战。现有的研究忽略了多模态数据所固有的多层次语义相似度。在此基础上,提出了一种基于图的多模态语义通信系统。在GMSC中,三联体充分关联了模态内和跨模态的语义相似性,从而实现了冗余语义信息的综合提取。设计了一种面向任务的压缩阈值方法,以去除冗余的传输信息,提高传输效率。仿真结果表明,在相同的压缩阈值下,GMSC的任务精度提高了7%,在相同的任务精度下显著提高了传输效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-Level Similarity for Efficient Compression in Graph-Based Multi-Modal Semantic Communication
Efficient and accurate multi-modal data transmission remains a key challenge in semantic communications. Existing research has overlooked the multi-level semantic similarity inherent in multi-modal data. Motivated by this, a graph-based multi-modal semantic communication system (GMSC) is proposed. In GMSC, triplets fully correlate intra-modal and cross-modal semantic similarities, enabling the integrated extraction of redundant semantic information. A task-oriented compression threshold method is designed to remove redundant transmission information and enhance efficiency. Simulation results demonstrate that GMSC achieves a 7% improvement in task accuracy at the same compression threshold and significantly improves transmission efficiency under the same task accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Communications Letters
IEEE Communications Letters 工程技术-电信学
CiteScore
8.10
自引率
7.30%
发文量
590
审稿时长
2.8 months
期刊介绍: The IEEE Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of communication over different media and channels including wire, underground, waveguide, optical fiber, and storage channels. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of communication systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信