{"title":"间歇性友好的神经结构搜索:揭开准确性和开销权衡的神秘面纱","authors":"Hashan Roshantha Mendis;Chih-Hsuan Yen;Chih-Kai Kang;Pi-Cheng Hsiu","doi":"10.1109/TCAD.2025.3555963","DOIUrl":null,"url":null,"abstract":"The fusion of tiny energy harvesting devices with deep neural networks (DNN) optimized for intermittent execution is vital for sustainable intelligent applications at the edge. However, current intermittent-aware neural architecture search (NAS) frameworks overlook the inherent intermittency management overhead (IMO) of DNNs, leading to under-performance upon deployment. Moreover, we observe that straightforward IMO minimization within NAS may degrade solution accuracy. This work explores the relationship between DNN architectural characteristics, IMO, and accuracy, uncovering the varying sensitivity toward IMO across different DNN characteristics. Inspired by our insights, we present two guidelines for leveraging IMO sensitivity in NAS. First, the overall architecture search space can be reduced to exclude parameters with low IMO sensitivity, and second, network blocks with high IMO sensitivity can be primarily focused during the search, facilitating the discovery of highly accurate networks with low IMO. We incorporate these guidelines into TiNAS, which integrates cutting-edge tiny NAS and intermittent-aware NAS frameworks. Evaluations are conducted across various datasets and latency requirements, as well as deployment experiments on a Texas Instruments device under different intermittent power profiles. Compared to two variants, one minimizing IMO and the other disregarding IMO, TiNAS, respectively, achieves up to 38% higher accuracy and 33% lower IMO, with greater improvements for larger datasets. Its deployed solutions also achieve up to a 1.33 times inference speedup, especially under fluctuating power conditions.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"44 10","pages":"3990-4003"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intermittent-Friendly Neural Architecture Search: Demystifying Accuracy and Overhead Tradeoffs\",\"authors\":\"Hashan Roshantha Mendis;Chih-Hsuan Yen;Chih-Kai Kang;Pi-Cheng Hsiu\",\"doi\":\"10.1109/TCAD.2025.3555963\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The fusion of tiny energy harvesting devices with deep neural networks (DNN) optimized for intermittent execution is vital for sustainable intelligent applications at the edge. However, current intermittent-aware neural architecture search (NAS) frameworks overlook the inherent intermittency management overhead (IMO) of DNNs, leading to under-performance upon deployment. Moreover, we observe that straightforward IMO minimization within NAS may degrade solution accuracy. This work explores the relationship between DNN architectural characteristics, IMO, and accuracy, uncovering the varying sensitivity toward IMO across different DNN characteristics. Inspired by our insights, we present two guidelines for leveraging IMO sensitivity in NAS. First, the overall architecture search space can be reduced to exclude parameters with low IMO sensitivity, and second, network blocks with high IMO sensitivity can be primarily focused during the search, facilitating the discovery of highly accurate networks with low IMO. We incorporate these guidelines into TiNAS, which integrates cutting-edge tiny NAS and intermittent-aware NAS frameworks. Evaluations are conducted across various datasets and latency requirements, as well as deployment experiments on a Texas Instruments device under different intermittent power profiles. Compared to two variants, one minimizing IMO and the other disregarding IMO, TiNAS, respectively, achieves up to 38% higher accuracy and 33% lower IMO, with greater improvements for larger datasets. Its deployed solutions also achieve up to a 1.33 times inference speedup, especially under fluctuating power conditions.\",\"PeriodicalId\":13251,\"journal\":{\"name\":\"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems\",\"volume\":\"44 10\",\"pages\":\"3990-4003\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2025-03-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10944793/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10944793/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Intermittent-Friendly Neural Architecture Search: Demystifying Accuracy and Overhead Tradeoffs
The fusion of tiny energy harvesting devices with deep neural networks (DNN) optimized for intermittent execution is vital for sustainable intelligent applications at the edge. However, current intermittent-aware neural architecture search (NAS) frameworks overlook the inherent intermittency management overhead (IMO) of DNNs, leading to under-performance upon deployment. Moreover, we observe that straightforward IMO minimization within NAS may degrade solution accuracy. This work explores the relationship between DNN architectural characteristics, IMO, and accuracy, uncovering the varying sensitivity toward IMO across different DNN characteristics. Inspired by our insights, we present two guidelines for leveraging IMO sensitivity in NAS. First, the overall architecture search space can be reduced to exclude parameters with low IMO sensitivity, and second, network blocks with high IMO sensitivity can be primarily focused during the search, facilitating the discovery of highly accurate networks with low IMO. We incorporate these guidelines into TiNAS, which integrates cutting-edge tiny NAS and intermittent-aware NAS frameworks. Evaluations are conducted across various datasets and latency requirements, as well as deployment experiments on a Texas Instruments device under different intermittent power profiles. Compared to two variants, one minimizing IMO and the other disregarding IMO, TiNAS, respectively, achieves up to 38% higher accuracy and 33% lower IMO, with greater improvements for larger datasets. Its deployed solutions also achieve up to a 1.33 times inference speedup, especially under fluctuating power conditions.
期刊介绍:
The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.