分布式非凸优化及其在无人机最优交会编队中的应用

IF 8.7 1区 计算机科学 Q1 AUTOMATION & CONTROL SYSTEMS
Fuxi Niu;Xiaohong Nian;Miaoping Sun;Yong Chen;Yu Shi;Jieyuan Yang;Shiling Li
{"title":"分布式非凸优化及其在无人机最优交会编队中的应用","authors":"Fuxi Niu;Xiaohong Nian;Miaoping Sun;Yong Chen;Yu Shi;Jieyuan Yang;Shiling Li","doi":"10.1109/TSMC.2025.3583312","DOIUrl":null,"url":null,"abstract":"A distributed multiagent deep reinforcement learning algorithm (DMADRLA) with theoretical guarantees is proposed for the distributed nonconvex constraint optimization problem. This algorithm provides an innovative theoretical framework for distributed nonconvex optimization problems (DNCOPs) by combining traditional distributed constraint optimization and multiagent deep reinforcement learning methods. This combination eliminates the need for general assumptions on the cost function, enabling a more comprehensive view of distributed nonconvex optimization strategies. It allows for the analysis of both traditional distributed constrained optimization and multiagent deep reinforcement learning methods in one unified approach. Finally, the effectiveness of the algorithm is verified through numerical simulations and experimental verification.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 10","pages":"6789-6801"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distributed Nonconvex Optimization and Application to UAV Optimal Rendezvous Formation\",\"authors\":\"Fuxi Niu;Xiaohong Nian;Miaoping Sun;Yong Chen;Yu Shi;Jieyuan Yang;Shiling Li\",\"doi\":\"10.1109/TSMC.2025.3583312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A distributed multiagent deep reinforcement learning algorithm (DMADRLA) with theoretical guarantees is proposed for the distributed nonconvex constraint optimization problem. This algorithm provides an innovative theoretical framework for distributed nonconvex optimization problems (DNCOPs) by combining traditional distributed constraint optimization and multiagent deep reinforcement learning methods. This combination eliminates the need for general assumptions on the cost function, enabling a more comprehensive view of distributed nonconvex optimization strategies. It allows for the analysis of both traditional distributed constrained optimization and multiagent deep reinforcement learning methods in one unified approach. Finally, the effectiveness of the algorithm is verified through numerical simulations and experimental verification.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":\"55 10\",\"pages\":\"6789-6801\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11086423/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11086423/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

针对分布式非凸约束优化问题,提出了一种具有理论保证的分布式多智能体深度强化学习算法。该算法将传统的分布式约束优化方法与多智能体深度强化学习方法相结合,为分布式非凸优化问题(DNCOPs)提供了一个创新的理论框架。这种组合消除了对成本函数的一般假设的需要,从而能够更全面地了解分布式非凸优化策略。它允许在一个统一的方法中分析传统的分布式约束优化和多智能体深度强化学习方法。最后,通过数值模拟和实验验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distributed Nonconvex Optimization and Application to UAV Optimal Rendezvous Formation
A distributed multiagent deep reinforcement learning algorithm (DMADRLA) with theoretical guarantees is proposed for the distributed nonconvex constraint optimization problem. This algorithm provides an innovative theoretical framework for distributed nonconvex optimization problems (DNCOPs) by combining traditional distributed constraint optimization and multiagent deep reinforcement learning methods. This combination eliminates the need for general assumptions on the cost function, enabling a more comprehensive view of distributed nonconvex optimization strategies. It allows for the analysis of both traditional distributed constrained optimization and multiagent deep reinforcement learning methods in one unified approach. Finally, the effectiveness of the algorithm is verified through numerical simulations and experimental verification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Systems Man Cybernetics-Systems
IEEE Transactions on Systems Man Cybernetics-Systems AUTOMATION & CONTROL SYSTEMS-COMPUTER SCIENCE, CYBERNETICS
CiteScore
18.50
自引率
11.50%
发文量
812
审稿时长
6 months
期刊介绍: The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信