{"title":"切换延迟神经网络同步的耗散分析与无碰撞传递控制:一种改进的组合切换方法","authors":"Hong Sang;Fang Li;Shuaibing Zhu;Hong Nie;Jun Fu","doi":"10.1109/TSMC.2025.3593877","DOIUrl":null,"url":null,"abstract":"This investigation mainly focuses on the dissipativity analysis and bumpless transfer synchronization issue for switched delayed neural networks (SDNNs). To effectively leverage the past information of system states, a modified combined switching approach is creatively established, which offers a less conservative framework for the dissipativity analysis of SDNNs. By constructing a new time-dependent multiple Lyapunov–Krasovskii functional (TDMLF), sufficient conditions are then developed to ensure the strict <inline-formula> <tex-math>$(\\mathscr {X}_{1}, \\mathscr {X}_{2},\\mathscr {X}_{3})$ </tex-math></inline-formula>-<inline-formula> <tex-math>$\\gamma $ </tex-math></inline-formula> dissipativity for the considered SDNNs, even in cases where all subnetworks are nondissipative. Subsequently, the proposed approach is implemented for the synchronization of SDNNs, where a bumpless transfer proportional-integral-like (PI-like) control approach is first adopted. In addition, the corresponding criterion is also proposed, which guarantees that the resultant closed-loop synchronization error systems (SESs) not only satisfy strict dissipativity but also achieve a certain bumpless transfer performance (BTP). Ultimately, the practicability and superiority of the proposed design approach are thoroughly substantiated through two simulation examples.","PeriodicalId":48915,"journal":{"name":"IEEE Transactions on Systems Man Cybernetics-Systems","volume":"55 10","pages":"6913-6924"},"PeriodicalIF":8.7000,"publicationDate":"2025-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dissipativity Analysis and Bumpless Transfer Control for Synchronization of Switched Delayed Neural Networks: A Modified Combined Switching Approach\",\"authors\":\"Hong Sang;Fang Li;Shuaibing Zhu;Hong Nie;Jun Fu\",\"doi\":\"10.1109/TSMC.2025.3593877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This investigation mainly focuses on the dissipativity analysis and bumpless transfer synchronization issue for switched delayed neural networks (SDNNs). To effectively leverage the past information of system states, a modified combined switching approach is creatively established, which offers a less conservative framework for the dissipativity analysis of SDNNs. By constructing a new time-dependent multiple Lyapunov–Krasovskii functional (TDMLF), sufficient conditions are then developed to ensure the strict <inline-formula> <tex-math>$(\\\\mathscr {X}_{1}, \\\\mathscr {X}_{2},\\\\mathscr {X}_{3})$ </tex-math></inline-formula>-<inline-formula> <tex-math>$\\\\gamma $ </tex-math></inline-formula> dissipativity for the considered SDNNs, even in cases where all subnetworks are nondissipative. Subsequently, the proposed approach is implemented for the synchronization of SDNNs, where a bumpless transfer proportional-integral-like (PI-like) control approach is first adopted. In addition, the corresponding criterion is also proposed, which guarantees that the resultant closed-loop synchronization error systems (SESs) not only satisfy strict dissipativity but also achieve a certain bumpless transfer performance (BTP). Ultimately, the practicability and superiority of the proposed design approach are thoroughly substantiated through two simulation examples.\",\"PeriodicalId\":48915,\"journal\":{\"name\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"volume\":\"55 10\",\"pages\":\"6913-6924\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man Cybernetics-Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11127011/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man Cybernetics-Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11127011/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Dissipativity Analysis and Bumpless Transfer Control for Synchronization of Switched Delayed Neural Networks: A Modified Combined Switching Approach
This investigation mainly focuses on the dissipativity analysis and bumpless transfer synchronization issue for switched delayed neural networks (SDNNs). To effectively leverage the past information of system states, a modified combined switching approach is creatively established, which offers a less conservative framework for the dissipativity analysis of SDNNs. By constructing a new time-dependent multiple Lyapunov–Krasovskii functional (TDMLF), sufficient conditions are then developed to ensure the strict $(\mathscr {X}_{1}, \mathscr {X}_{2},\mathscr {X}_{3})$ -$\gamma $ dissipativity for the considered SDNNs, even in cases where all subnetworks are nondissipative. Subsequently, the proposed approach is implemented for the synchronization of SDNNs, where a bumpless transfer proportional-integral-like (PI-like) control approach is first adopted. In addition, the corresponding criterion is also proposed, which guarantees that the resultant closed-loop synchronization error systems (SESs) not only satisfy strict dissipativity but also achieve a certain bumpless transfer performance (BTP). Ultimately, the practicability and superiority of the proposed design approach are thoroughly substantiated through two simulation examples.
期刊介绍:
The IEEE Transactions on Systems, Man, and Cybernetics: Systems encompasses the fields of systems engineering, covering issue formulation, analysis, and modeling throughout the systems engineering lifecycle phases. It addresses decision-making, issue interpretation, systems management, processes, and various methods such as optimization, modeling, and simulation in the development and deployment of large systems.