{"title":"从细胞内传感器到系统恢复力:重新构建压力生物学","authors":"Jakob Hartmann","doi":"10.1016/j.ynstr.2025.100755","DOIUrl":null,"url":null,"abstract":"<div><div>The biological consequences of chronic stress and trauma are complex, influencing multiple systems and contributing to the development of psychiatric disorders such as MDD and PTSD. Yet, the underlying molecular mechanisms that confer susceptibility in some individuals but resilience in others remain incompletely understood. To help close these knowledge gaps, my work centers on glucocorticoid signaling as a core mechanism underlying stress-related adaptations. This includes the glucocorticoid receptor (GR), its co-chaperones FKBP5 and FKBP4, and regulatory partners such as SKA2. Through a combination of genetic, viral, pharmacological, and transcriptomic approaches, my lab has delineated how these molecules influence HPA axis feedback, fear-related learning, and stress recovery. Recently, we identified a novel, GR-independent role for SKA2 in regulating secretory autophagy, a non-lytic autophagy pathway involved in vesicular cargo release, including cytokine secretion in microglia. These findings established a mechanistic link between intracellular stress signaling and neuroinflammatory responses. In a parallel line of research, we are investigating how chronic stress alters the gut microbiome composition and function, and how these changes impact behavior. Our aim is to harness dietary and probiotic interventions to restore homeostatic balance and enhance stress resilience. By integrating molecular neuroscience with immune and microbiome research, my long-term goal is to build a comprehensive, systems-level model of stress vulnerability and resilience. This approach holds promise for identifying novel biomarkers and therapeutic targets that support mental health and resilience across the lifespan.</div></div>","PeriodicalId":19125,"journal":{"name":"Neurobiology of Stress","volume":"39 ","pages":"Article 100755"},"PeriodicalIF":3.6000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From intracellular sensors to systemic resilience: Reframing the biology of stress\",\"authors\":\"Jakob Hartmann\",\"doi\":\"10.1016/j.ynstr.2025.100755\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The biological consequences of chronic stress and trauma are complex, influencing multiple systems and contributing to the development of psychiatric disorders such as MDD and PTSD. Yet, the underlying molecular mechanisms that confer susceptibility in some individuals but resilience in others remain incompletely understood. To help close these knowledge gaps, my work centers on glucocorticoid signaling as a core mechanism underlying stress-related adaptations. This includes the glucocorticoid receptor (GR), its co-chaperones FKBP5 and FKBP4, and regulatory partners such as SKA2. Through a combination of genetic, viral, pharmacological, and transcriptomic approaches, my lab has delineated how these molecules influence HPA axis feedback, fear-related learning, and stress recovery. Recently, we identified a novel, GR-independent role for SKA2 in regulating secretory autophagy, a non-lytic autophagy pathway involved in vesicular cargo release, including cytokine secretion in microglia. These findings established a mechanistic link between intracellular stress signaling and neuroinflammatory responses. In a parallel line of research, we are investigating how chronic stress alters the gut microbiome composition and function, and how these changes impact behavior. Our aim is to harness dietary and probiotic interventions to restore homeostatic balance and enhance stress resilience. By integrating molecular neuroscience with immune and microbiome research, my long-term goal is to build a comprehensive, systems-level model of stress vulnerability and resilience. This approach holds promise for identifying novel biomarkers and therapeutic targets that support mental health and resilience across the lifespan.</div></div>\",\"PeriodicalId\":19125,\"journal\":{\"name\":\"Neurobiology of Stress\",\"volume\":\"39 \",\"pages\":\"Article 100755\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurobiology of Stress\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352289525000499\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Stress","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352289525000499","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
From intracellular sensors to systemic resilience: Reframing the biology of stress
The biological consequences of chronic stress and trauma are complex, influencing multiple systems and contributing to the development of psychiatric disorders such as MDD and PTSD. Yet, the underlying molecular mechanisms that confer susceptibility in some individuals but resilience in others remain incompletely understood. To help close these knowledge gaps, my work centers on glucocorticoid signaling as a core mechanism underlying stress-related adaptations. This includes the glucocorticoid receptor (GR), its co-chaperones FKBP5 and FKBP4, and regulatory partners such as SKA2. Through a combination of genetic, viral, pharmacological, and transcriptomic approaches, my lab has delineated how these molecules influence HPA axis feedback, fear-related learning, and stress recovery. Recently, we identified a novel, GR-independent role for SKA2 in regulating secretory autophagy, a non-lytic autophagy pathway involved in vesicular cargo release, including cytokine secretion in microglia. These findings established a mechanistic link between intracellular stress signaling and neuroinflammatory responses. In a parallel line of research, we are investigating how chronic stress alters the gut microbiome composition and function, and how these changes impact behavior. Our aim is to harness dietary and probiotic interventions to restore homeostatic balance and enhance stress resilience. By integrating molecular neuroscience with immune and microbiome research, my long-term goal is to build a comprehensive, systems-level model of stress vulnerability and resilience. This approach holds promise for identifying novel biomarkers and therapeutic targets that support mental health and resilience across the lifespan.
期刊介绍:
Neurobiology of Stress is a multidisciplinary journal for the publication of original research and review articles on basic, translational and clinical research into stress and related disorders. It will focus on the impact of stress on the brain from cellular to behavioral functions and stress-related neuropsychiatric disorders (such as depression, trauma and anxiety). The translation of basic research findings into real-world applications will be a key aim of the journal.
Basic, translational and clinical research on the following topics as they relate to stress will be covered:
Molecular substrates and cell signaling,
Genetics and epigenetics,
Stress circuitry,
Structural and physiological plasticity,
Developmental Aspects,
Laboratory models of stress,
Neuroinflammation and pathology,
Memory and Cognition,
Motivational Processes,
Fear and Anxiety,
Stress-related neuropsychiatric disorders (including depression, PTSD, substance abuse),
Neuropsychopharmacology.