过氧化键驱动BaO2在不同晶体体系中的稳定性和多功能性质:基于GGA和HSE06的第一性原理研究

IF 3 Q2 PHYSICS, CONDENSED MATTER
Varin Bakhtyar Abdullah , Botan Jawdat Abdullah , Nzar Rauf Abdullah
{"title":"过氧化键驱动BaO2在不同晶体体系中的稳定性和多功能性质:基于GGA和HSE06的第一性原理研究","authors":"Varin Bakhtyar Abdullah ,&nbsp;Botan Jawdat Abdullah ,&nbsp;Nzar Rauf Abdullah","doi":"10.1016/j.micrna.2025.208336","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the stability, electronic structure, thermal, and optical properties of barium peroxide (BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) in three different crystal systems: Orthorhombic (BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Ortho), Tetragonal (BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Tetra), and Monoclinic (BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Mono). Density functional theory (DFT) calculations are performed using both the GGA and HSE06 functionals. The energetic, thermal, and dynamical stabilities are evaluated through formation energy calculations, <em>ab</em>-initio molecular dynamics (AIMD) simulations, and phonon band structure analyses, respectively. A strong peroxide bond is found in BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Mono, resulting in more localized peroxide orbitals, which typically lead to a larger band gap. In contrast, the relatively weaker peroxide bond in BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Ortho leads to slightly delocalized peroxide orbitals, thereby reducing the band gap. The heat capacity of the most thermally stable BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Mono structure is significantly higher than that of the other two structures, due to its higher phonon density of states at both low and high frequency ranges. The optical responses, including dielectric functions, refractive index, and optical conductivity, are also investigated. It is found that for BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Mono, the indirect electronic band gap is very close to the optical band gap due to the flat band nature of the structure. In contrast, the optical band gaps of the other two structures are larger than their respective indirect electronic band gaps. All three BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> structures exhibit very low static dielectric constants, indicating weak electronic screening consistent with their insulating nature. These results show that BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> could be useful for UV optoelectronic applications, particularly in high-energy devices like UV photodetectors and sensors.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208336"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Peroxide bond-driven stability and multifunctional properties of BaO2 in different crystal systems: A first-principles study using GGA and HSE06\",\"authors\":\"Varin Bakhtyar Abdullah ,&nbsp;Botan Jawdat Abdullah ,&nbsp;Nzar Rauf Abdullah\",\"doi\":\"10.1016/j.micrna.2025.208336\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study explores the stability, electronic structure, thermal, and optical properties of barium peroxide (BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>) in three different crystal systems: Orthorhombic (BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Ortho), Tetragonal (BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Tetra), and Monoclinic (BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Mono). Density functional theory (DFT) calculations are performed using both the GGA and HSE06 functionals. The energetic, thermal, and dynamical stabilities are evaluated through formation energy calculations, <em>ab</em>-initio molecular dynamics (AIMD) simulations, and phonon band structure analyses, respectively. A strong peroxide bond is found in BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Mono, resulting in more localized peroxide orbitals, which typically lead to a larger band gap. In contrast, the relatively weaker peroxide bond in BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Ortho leads to slightly delocalized peroxide orbitals, thereby reducing the band gap. The heat capacity of the most thermally stable BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Mono structure is significantly higher than that of the other two structures, due to its higher phonon density of states at both low and high frequency ranges. The optical responses, including dielectric functions, refractive index, and optical conductivity, are also investigated. It is found that for BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span>-Mono, the indirect electronic band gap is very close to the optical band gap due to the flat band nature of the structure. In contrast, the optical band gaps of the other two structures are larger than their respective indirect electronic band gaps. All three BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> structures exhibit very low static dielectric constants, indicating weak electronic screening consistent with their insulating nature. These results show that BaO<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> could be useful for UV optoelectronic applications, particularly in high-energy devices like UV photodetectors and sensors.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"208 \",\"pages\":\"Article 208336\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2773012325002651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012325002651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了过氧化钡(BaO2)在三种不同晶体体系中的稳定性、电子结构、热学和光学性质:正交晶系(BaO2- ortho)、四方晶系(BaO2- tetra)和单斜晶系(BaO2- mono)。密度泛函理论(DFT)计算同时使用GGA和HSE06泛函执行。分别通过地层能量计算、ab-initio分子动力学(AIMD)模拟和声子带结构分析来评估其能量、热稳定性和动力学稳定性。在BaO2-Mono中发现了一个强的过氧化物键,导致更多的局部过氧化物轨道,这通常导致更大的带隙。相比之下,bao - 2- ortho中相对较弱的过氧化物键导致过氧化物轨道略微离域,从而减小了带隙。最热稳定的BaO2-Mono结构的热容明显高于其他两种结构,这是由于其在低频和高频范围内的态声子密度都较高。光学响应,包括介电函数,折射率和光电导率,也进行了研究。研究发现,对于BaO2-Mono,由于其结构的平带性质,间接电子带隙与光学带隙非常接近。相比之下,其他两种结构的光学带隙大于它们各自的间接电子带隙。这三种BaO2结构都表现出非常低的静态介电常数,表明弱电子屏蔽与它们的绝缘性质一致。这些结果表明,BaO2可用于紫外光电应用,特别是在高能器件中,如紫外光电探测器和传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Peroxide bond-driven stability and multifunctional properties of BaO2 in different crystal systems: A first-principles study using GGA and HSE06
This study explores the stability, electronic structure, thermal, and optical properties of barium peroxide (BaO2) in three different crystal systems: Orthorhombic (BaO2-Ortho), Tetragonal (BaO2-Tetra), and Monoclinic (BaO2-Mono). Density functional theory (DFT) calculations are performed using both the GGA and HSE06 functionals. The energetic, thermal, and dynamical stabilities are evaluated through formation energy calculations, ab-initio molecular dynamics (AIMD) simulations, and phonon band structure analyses, respectively. A strong peroxide bond is found in BaO2-Mono, resulting in more localized peroxide orbitals, which typically lead to a larger band gap. In contrast, the relatively weaker peroxide bond in BaO2-Ortho leads to slightly delocalized peroxide orbitals, thereby reducing the band gap. The heat capacity of the most thermally stable BaO2-Mono structure is significantly higher than that of the other two structures, due to its higher phonon density of states at both low and high frequency ranges. The optical responses, including dielectric functions, refractive index, and optical conductivity, are also investigated. It is found that for BaO2-Mono, the indirect electronic band gap is very close to the optical band gap due to the flat band nature of the structure. In contrast, the optical band gaps of the other two structures are larger than their respective indirect electronic band gaps. All three BaO2 structures exhibit very low static dielectric constants, indicating weak electronic screening consistent with their insulating nature. These results show that BaO2 could be useful for UV optoelectronic applications, particularly in high-energy devices like UV photodetectors and sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信