{"title":"积空间中成分Krasnosel’skii型不动点定理及其应用","authors":"Laura M. Fernández–Pardo, Jorge Rodríguez–López","doi":"10.1016/j.nonrwa.2025.104506","DOIUrl":null,"url":null,"abstract":"<div><div>We present a version of Krasnosel’skiĭ fixed point theorem for operators acting on Cartesian products of normed linear spaces, under cone-compression and cone-expansion conditions of norm type. Our approach, based on the fixed point index theory in cones, guarantees the existence of a coexistence fixed point, that is, one with nontrivial components. As an application, we prove the existence of periodic solutions with strictly positive components for a system of second-order differential equations. In particular, we address cases involving singular nonlinearities and hybrid terms, characterized by sublinear behavior in one component and superlinear behavior in the other.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104506"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Component-wise Krasnosel’skii type fixed point theorem in product spaces and applications\",\"authors\":\"Laura M. Fernández–Pardo, Jorge Rodríguez–López\",\"doi\":\"10.1016/j.nonrwa.2025.104506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a version of Krasnosel’skiĭ fixed point theorem for operators acting on Cartesian products of normed linear spaces, under cone-compression and cone-expansion conditions of norm type. Our approach, based on the fixed point index theory in cones, guarantees the existence of a coexistence fixed point, that is, one with nontrivial components. As an application, we prove the existence of periodic solutions with strictly positive components for a system of second-order differential equations. In particular, we address cases involving singular nonlinearities and hybrid terms, characterized by sublinear behavior in one component and superlinear behavior in the other.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104506\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001889\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001889","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Component-wise Krasnosel’skii type fixed point theorem in product spaces and applications
We present a version of Krasnosel’skiĭ fixed point theorem for operators acting on Cartesian products of normed linear spaces, under cone-compression and cone-expansion conditions of norm type. Our approach, based on the fixed point index theory in cones, guarantees the existence of a coexistence fixed point, that is, one with nontrivial components. As an application, we prove the existence of periodic solutions with strictly positive components for a system of second-order differential equations. In particular, we address cases involving singular nonlinearities and hybrid terms, characterized by sublinear behavior in one component and superlinear behavior in the other.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.