{"title":"局部传感趋化系统质量量化不存在的充分条件","authors":"Yuri Soga","doi":"10.1016/j.nonrwa.2025.104504","DOIUrl":null,"url":null,"abstract":"<div><div>We analyze blowup solutions in infinite time of the Neumann boundary value problem for the fully parabolic chemotaxis system with local sensing:<span><span><span><math><mtable><mtr><mtd><mrow><mo>{</mo><mtable><mtr><mtd><mrow><msub><mi>u</mi><mi>t</mi></msub><mo>=</mo><mstyle><mi>Δ</mi></mstyle><mrow><mo>(</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>v</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mspace></mspace><mspace></mspace><mrow><mi>in</mi></mrow><mspace></mspace><mstyle><mi>Ω</mi></mstyle><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>v</mi><mi>t</mi></msub><mo>=</mo><mstyle><mi>Δ</mi></mstyle><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mspace></mspace><mrow><mi>in</mi></mrow><mspace></mspace><mstyle><mi>Ω</mi></mstyle><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mrow></mtd></mtr></mtable></mrow></mtd></mtr></mtable></math></span></span></span>where <span><math><mstyle><mi>Ω</mi></mstyle></math></span> is a ball in two-dimensional space and with nonnegative radially symmetric initial data. In the case of the Keller–Segel system which has similar mathematical structures to our system, it was shown that solutions blow up in finite time if and only if <span><math><mrow><mi>L</mi><mi>log</mi><mi>L</mi></mrow></math></span> for the first component <span><math><mi>u</mi></math></span> diverges in finite time. On the other hand, focusing on the variational structure induced by the signal-dependent motility function <span><math><msup><mi>e</mi><mrow><mo>−</mo><mi>v</mi></mrow></msup></math></span>, we show that the unboundedness of <span><math><mrow><msub><mo>∫</mo><mstyle><mi>Ω</mi></mstyle></msub><msup><mi>e</mi><mi>v</mi></msup><mi>d</mi><mi>x</mi></mrow></math></span> for the second component <span><math><mi>v</mi></math></span> gives rise to blowup solutions in infinite time under the assumption of radial symmetry. Moreover we prove mass concentration phenomena at the origin. It is shown that the radially symmetric solutions of our system develop a singularity like a Dirac delta function in infinite time. Here we investigate the weight of this singularity. Consequently it is shown that mass quantization may not occur; that is, the weight of the singularity can exceed <span><math><mrow><mn>8</mn><mi>π</mi></mrow></math></span> under the assumption of a uniform-in-time lower bound for a Lyapunov functional. This type of behavior cannot be observed in the Keller–Segel system.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104504"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A sufficient condition for absence of mass quantization in a chemotaxis system with local sensing\",\"authors\":\"Yuri Soga\",\"doi\":\"10.1016/j.nonrwa.2025.104504\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We analyze blowup solutions in infinite time of the Neumann boundary value problem for the fully parabolic chemotaxis system with local sensing:<span><span><span><math><mtable><mtr><mtd><mrow><mo>{</mo><mtable><mtr><mtd><mrow><msub><mi>u</mi><mi>t</mi></msub><mo>=</mo><mstyle><mi>Δ</mi></mstyle><mrow><mo>(</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>v</mi></mrow></msup><mi>u</mi><mo>)</mo></mrow><mspace></mspace><mspace></mspace><mspace></mspace><mrow><mi>in</mi></mrow><mspace></mspace><mstyle><mi>Ω</mi></mstyle><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>v</mi><mi>t</mi></msub><mo>=</mo><mstyle><mi>Δ</mi></mstyle><mi>v</mi><mo>−</mo><mi>v</mi><mo>+</mo><mi>u</mi><mspace></mspace><mrow><mi>in</mi></mrow><mspace></mspace><mstyle><mi>Ω</mi></mstyle><mo>×</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>∞</mi><mo>)</mo></mrow><mo>,</mo></mrow></mtd></mtr></mtable></mrow></mtd></mtr></mtable></math></span></span></span>where <span><math><mstyle><mi>Ω</mi></mstyle></math></span> is a ball in two-dimensional space and with nonnegative radially symmetric initial data. In the case of the Keller–Segel system which has similar mathematical structures to our system, it was shown that solutions blow up in finite time if and only if <span><math><mrow><mi>L</mi><mi>log</mi><mi>L</mi></mrow></math></span> for the first component <span><math><mi>u</mi></math></span> diverges in finite time. On the other hand, focusing on the variational structure induced by the signal-dependent motility function <span><math><msup><mi>e</mi><mrow><mo>−</mo><mi>v</mi></mrow></msup></math></span>, we show that the unboundedness of <span><math><mrow><msub><mo>∫</mo><mstyle><mi>Ω</mi></mstyle></msub><msup><mi>e</mi><mi>v</mi></msup><mi>d</mi><mi>x</mi></mrow></math></span> for the second component <span><math><mi>v</mi></math></span> gives rise to blowup solutions in infinite time under the assumption of radial symmetry. Moreover we prove mass concentration phenomena at the origin. It is shown that the radially symmetric solutions of our system develop a singularity like a Dirac delta function in infinite time. Here we investigate the weight of this singularity. Consequently it is shown that mass quantization may not occur; that is, the weight of the singularity can exceed <span><math><mrow><mn>8</mn><mi>π</mi></mrow></math></span> under the assumption of a uniform-in-time lower bound for a Lyapunov functional. This type of behavior cannot be observed in the Keller–Segel system.</div></div>\",\"PeriodicalId\":49745,\"journal\":{\"name\":\"Nonlinear Analysis-Real World Applications\",\"volume\":\"88 \",\"pages\":\"Article 104504\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Analysis-Real World Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1468121825001853\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001853","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A sufficient condition for absence of mass quantization in a chemotaxis system with local sensing
We analyze blowup solutions in infinite time of the Neumann boundary value problem for the fully parabolic chemotaxis system with local sensing:where is a ball in two-dimensional space and with nonnegative radially symmetric initial data. In the case of the Keller–Segel system which has similar mathematical structures to our system, it was shown that solutions blow up in finite time if and only if for the first component diverges in finite time. On the other hand, focusing on the variational structure induced by the signal-dependent motility function , we show that the unboundedness of for the second component gives rise to blowup solutions in infinite time under the assumption of radial symmetry. Moreover we prove mass concentration phenomena at the origin. It is shown that the radially symmetric solutions of our system develop a singularity like a Dirac delta function in infinite time. Here we investigate the weight of this singularity. Consequently it is shown that mass quantization may not occur; that is, the weight of the singularity can exceed under the assumption of a uniform-in-time lower bound for a Lyapunov functional. This type of behavior cannot be observed in the Keller–Segel system.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.