TM(V, Ti, Ni)@GaN膜用于变压器油溶气检测的气敏性能:DFT研究

IF 3 Q2 PHYSICS, CONDENSED MATTER
Tianyan Jiang, Hao Chen, Sheng Xu, Yangxin You, Yang He, Xiaofeng Peng, Qiping Shen
{"title":"TM(V, Ti, Ni)@GaN膜用于变压器油溶气检测的气敏性能:DFT研究","authors":"Tianyan Jiang,&nbsp;Hao Chen,&nbsp;Sheng Xu,&nbsp;Yangxin You,&nbsp;Yang He,&nbsp;Xiaofeng Peng,&nbsp;Qiping Shen","doi":"10.1016/j.micrna.2025.208352","DOIUrl":null,"url":null,"abstract":"<div><div>This study systematically investigates the gas-sensing performance of transition-metal-doped GaN monolayers (TM = V, Ti, Ni) toward five typical dissolved gases in transformer oil (CO, H<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>) using first-principles density functional theory (DFT). Adsorption energy, charge transfer, electronic structure modulation, recovery time, and work function sensitivity were comprehensively analyzed. Results show that TM doping significantly enhances the interaction strength and electronic response of GaN, with Ti@GaN exhibiting the most favorable stability and sensitivity. Specifically, Ti@GaN demonstrates the highest work function sensitivity to H<sub>2</sub> (34.19 %) and C<sub>2</sub>H<sub>2</sub> (21.57 %), strong adsorption energies for CO (−2.27 eV), C<sub>2</sub>H<sub>2</sub> (−2.89 eV), and C<sub>2</sub>H<sub>4</sub> (−2.09 eV), and rapid recovery characteristics (0.576 s for CO at 500 K). Moreover, competitive adsorption analysis reveals robust selectivity, with H<sub>2</sub> and C<sub>2</sub>H<sub>2</sub> effectively blocking interference from CO and CH<sub>4</sub>. These results identify Ti@GaN as the most promising candidate for fabricating high-performance sensors dedicated to transformer fault gas detection.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"208 ","pages":"Article 208352"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gas-sensing performance of TM(V, Ti, Ni)@GaN monolayers for transformer oil dissolved gas detection: A DFT study\",\"authors\":\"Tianyan Jiang,&nbsp;Hao Chen,&nbsp;Sheng Xu,&nbsp;Yangxin You,&nbsp;Yang He,&nbsp;Xiaofeng Peng,&nbsp;Qiping Shen\",\"doi\":\"10.1016/j.micrna.2025.208352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study systematically investigates the gas-sensing performance of transition-metal-doped GaN monolayers (TM = V, Ti, Ni) toward five typical dissolved gases in transformer oil (CO, H<sub>2</sub>, CH<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>2</sub>H<sub>4</sub>) using first-principles density functional theory (DFT). Adsorption energy, charge transfer, electronic structure modulation, recovery time, and work function sensitivity were comprehensively analyzed. Results show that TM doping significantly enhances the interaction strength and electronic response of GaN, with Ti@GaN exhibiting the most favorable stability and sensitivity. Specifically, Ti@GaN demonstrates the highest work function sensitivity to H<sub>2</sub> (34.19 %) and C<sub>2</sub>H<sub>2</sub> (21.57 %), strong adsorption energies for CO (−2.27 eV), C<sub>2</sub>H<sub>2</sub> (−2.89 eV), and C<sub>2</sub>H<sub>4</sub> (−2.09 eV), and rapid recovery characteristics (0.576 s for CO at 500 K). Moreover, competitive adsorption analysis reveals robust selectivity, with H<sub>2</sub> and C<sub>2</sub>H<sub>2</sub> effectively blocking interference from CO and CH<sub>4</sub>. These results identify Ti@GaN as the most promising candidate for fabricating high-performance sensors dedicated to transformer fault gas detection.</div></div>\",\"PeriodicalId\":100923,\"journal\":{\"name\":\"Micro and Nanostructures\",\"volume\":\"208 \",\"pages\":\"Article 208352\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Micro and Nanostructures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277301232500281X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277301232500281X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用第一性原理密度泛函理论(DFT)系统研究了过渡金属掺杂GaN单层膜(TM = V, Ti, Ni)对变压器油中5种典型溶解气体(CO, H2, CH4, C2H2, C2H4)的气敏性能。综合分析了吸附能、电荷转移、电子结构调制、恢复时间和功函数灵敏度。结果表明,TM掺杂显著增强了GaN的相互作用强度和电子响应,其中Ti@GaN表现出最有利的稳定性和灵敏度。具体来说,Ti@GaN对H2(34.19%)和C2H2(21.57%)的功函数灵敏度最高,对CO (- 2.27 eV)、C2H2 (- 2.89 eV)和C2H4 (- 2.09 eV)的吸附能较强,对CO在500 K下的回收率为0.576 s。此外,竞争吸附分析显示,H2和C2H2有效地阻断了CO和CH4的干扰,具有很强的选择性。这些结果确定Ti@GaN是制造专用于变压器故障气体检测的高性能传感器的最有希望的候选者。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gas-sensing performance of TM(V, Ti, Ni)@GaN monolayers for transformer oil dissolved gas detection: A DFT study
This study systematically investigates the gas-sensing performance of transition-metal-doped GaN monolayers (TM = V, Ti, Ni) toward five typical dissolved gases in transformer oil (CO, H2, CH4, C2H2, C2H4) using first-principles density functional theory (DFT). Adsorption energy, charge transfer, electronic structure modulation, recovery time, and work function sensitivity were comprehensively analyzed. Results show that TM doping significantly enhances the interaction strength and electronic response of GaN, with Ti@GaN exhibiting the most favorable stability and sensitivity. Specifically, Ti@GaN demonstrates the highest work function sensitivity to H2 (34.19 %) and C2H2 (21.57 %), strong adsorption energies for CO (−2.27 eV), C2H2 (−2.89 eV), and C2H4 (−2.09 eV), and rapid recovery characteristics (0.576 s for CO at 500 K). Moreover, competitive adsorption analysis reveals robust selectivity, with H2 and C2H2 effectively blocking interference from CO and CH4. These results identify Ti@GaN as the most promising candidate for fabricating high-performance sensors dedicated to transformer fault gas detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信