高维空间路径GHZ态的高效可回收生成协议

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Meng-Dong Zhu , Yu-Hao Wang , Shi-Pu Gu , Xing-Fu Wang , Lan Zhou , Yu-Bo Sheng
{"title":"高维空间路径GHZ态的高效可回收生成协议","authors":"Meng-Dong Zhu ,&nbsp;Yu-Hao Wang ,&nbsp;Shi-Pu Gu ,&nbsp;Xing-Fu Wang ,&nbsp;Lan Zhou ,&nbsp;Yu-Bo Sheng","doi":"10.1016/j.aop.2025.170225","DOIUrl":null,"url":null,"abstract":"<div><div>Multipartite high-dimensional entanglement offers a larger space for storing and processing quantum information and is the crucial resource in future high-capacity and high-security quantum networks. The high-efficiency generation of multipartite high-dimensional entanglement is of central importance for its application. In the paper, we propose a recyclable generation protocol for the four-photon three-dimensional spatial-path Greenberger–Horne–Zeilinger (GHZ) state with linear optical elements and practical “on-off” photon detectors. Our protocol is feasible under current experimental conditions, and the generated three-dimensional GHZ state can be preserved for applications. When the generation protocol fails, the output state may evolve into the auxiliary state for the next generation round. In this way, our protocol can effectively save precious EPR resources. With the increase of repeating number, our protocol will have a prominent advantage in saving precious entanglement resources. Our protocol can provide effective guidance for the experimental preparation of the three-dimensional spatial-path GHZ state, and has important application in future multipartite high-dimensional quantum networks.</div></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":"482 ","pages":"Article 170225"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient recyclable generation protocol for high-dimensional spatial-path GHZ states\",\"authors\":\"Meng-Dong Zhu ,&nbsp;Yu-Hao Wang ,&nbsp;Shi-Pu Gu ,&nbsp;Xing-Fu Wang ,&nbsp;Lan Zhou ,&nbsp;Yu-Bo Sheng\",\"doi\":\"10.1016/j.aop.2025.170225\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Multipartite high-dimensional entanglement offers a larger space for storing and processing quantum information and is the crucial resource in future high-capacity and high-security quantum networks. The high-efficiency generation of multipartite high-dimensional entanglement is of central importance for its application. In the paper, we propose a recyclable generation protocol for the four-photon three-dimensional spatial-path Greenberger–Horne–Zeilinger (GHZ) state with linear optical elements and practical “on-off” photon detectors. Our protocol is feasible under current experimental conditions, and the generated three-dimensional GHZ state can be preserved for applications. When the generation protocol fails, the output state may evolve into the auxiliary state for the next generation round. In this way, our protocol can effectively save precious EPR resources. With the increase of repeating number, our protocol will have a prominent advantage in saving precious entanglement resources. Our protocol can provide effective guidance for the experimental preparation of the three-dimensional spatial-path GHZ state, and has important application in future multipartite high-dimensional quantum networks.</div></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":\"482 \",\"pages\":\"Article 170225\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2025-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491625003070\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491625003070","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

多部高维纠缠为量子信息的存储和处理提供了更大的空间,是未来高容量、高安全量子网络的关键资源。多部高维纠缠的高效生成对其应用至关重要。在本文中,我们提出了一种可回收的四光子三维空间路径格林伯格-霍恩-塞林格(GHZ)态生成协议,该协议使用线性光学元件和实用的“开关”光子探测器。该方案在现有实验条件下是可行的,并且生成的三维GHZ态可以保留在实际应用中。当生成协议失败时,输出状态可能演变为下一轮的辅助状态。这样,我们的协议可以有效地节省宝贵的EPR资源。随着重复次数的增加,我们的协议在节省宝贵的纠缠资源方面将具有突出的优势。该协议可为三维空间路径GHZ态的实验制备提供有效的指导,在未来的多方位高维量子网络中具有重要的应用价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient recyclable generation protocol for high-dimensional spatial-path GHZ states
Multipartite high-dimensional entanglement offers a larger space for storing and processing quantum information and is the crucial resource in future high-capacity and high-security quantum networks. The high-efficiency generation of multipartite high-dimensional entanglement is of central importance for its application. In the paper, we propose a recyclable generation protocol for the four-photon three-dimensional spatial-path Greenberger–Horne–Zeilinger (GHZ) state with linear optical elements and practical “on-off” photon detectors. Our protocol is feasible under current experimental conditions, and the generated three-dimensional GHZ state can be preserved for applications. When the generation protocol fails, the output state may evolve into the auxiliary state for the next generation round. In this way, our protocol can effectively save precious EPR resources. With the increase of repeating number, our protocol will have a prominent advantage in saving precious entanglement resources. Our protocol can provide effective guidance for the experimental preparation of the three-dimensional spatial-path GHZ state, and has important application in future multipartite high-dimensional quantum networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信