Xiaoqi Yue , Alfred Larsson , Dihao Chen , Andrea Grespi , Giuseppe Abbondanza , Ulrich Lienert , Zoltan Hegedüs , Arno Jeromin , Thomas F. Keller , Mattia Scardamaglia , Andrey Shavorskiy , Chaofang Dong , Edvin Lundgren , Jinshan Pan
{"title":"镍基高温合金的转被动再钝化过程:隐性亚表面合金层的作用","authors":"Xiaoqi Yue , Alfred Larsson , Dihao Chen , Andrea Grespi , Giuseppe Abbondanza , Ulrich Lienert , Zoltan Hegedüs , Arno Jeromin , Thomas F. Keller , Mattia Scardamaglia , Andrey Shavorskiy , Chaofang Dong , Edvin Lundgren , Jinshan Pan","doi":"10.1016/j.corsci.2025.113321","DOIUrl":null,"url":null,"abstract":"<div><div>Passivity refers to spontaneous formation of a passive film on the surface of metals. High stability of the passive film on advanced alloys relies on the repassivation ability of the alloys in corrosive environments. Two Ni-base superalloys (Ni-22Cr-9Mo-5Fe-2Nb and Ni-18Cr-3Mo-20Fe-5Nb) are studied to elucidate the mechanism of repassivation through a combination of multimodal in-situ synchrotron X-ray measurements, electrochemical measurements, and first principles calculations. The synchrotron X-ray analyses enabled in-situ probing of the passive film and the hidden subsurface alloy layer. The results reveal chemical and structural evolutions of both the passive film and the underlying subsurface alloy layer under transpassive condition. The first principles calculations demonstrate a crucial role of the subsurface alloy layer in the repassivation of the alloys. Upon passivity breakdown at high electrochemical potentials, the passive film rich in Cr oxide becomes highly defective with vacancies, and metal dissolution leads to generation of vacancies (mainly Ni) in the subsurface alloy layer. This promotes repassivation process by enhanced outward Cr diffusion strengthening the metal bond (more Cr-Ni bonds) in the subsurface alloy layer and, together with the enrichment of high valence Mo- and Nb-oxides in the passive film, lead to repassivation when the high potential is removed, which is different from Fe-rich alloys.</div></div>","PeriodicalId":290,"journal":{"name":"Corrosion Science","volume":"257 ","pages":"Article 113321"},"PeriodicalIF":7.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transpassive-repassivation process of Ni-base superalloys: The role of hidden subsurface alloy layer\",\"authors\":\"Xiaoqi Yue , Alfred Larsson , Dihao Chen , Andrea Grespi , Giuseppe Abbondanza , Ulrich Lienert , Zoltan Hegedüs , Arno Jeromin , Thomas F. Keller , Mattia Scardamaglia , Andrey Shavorskiy , Chaofang Dong , Edvin Lundgren , Jinshan Pan\",\"doi\":\"10.1016/j.corsci.2025.113321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Passivity refers to spontaneous formation of a passive film on the surface of metals. High stability of the passive film on advanced alloys relies on the repassivation ability of the alloys in corrosive environments. Two Ni-base superalloys (Ni-22Cr-9Mo-5Fe-2Nb and Ni-18Cr-3Mo-20Fe-5Nb) are studied to elucidate the mechanism of repassivation through a combination of multimodal in-situ synchrotron X-ray measurements, electrochemical measurements, and first principles calculations. The synchrotron X-ray analyses enabled in-situ probing of the passive film and the hidden subsurface alloy layer. The results reveal chemical and structural evolutions of both the passive film and the underlying subsurface alloy layer under transpassive condition. The first principles calculations demonstrate a crucial role of the subsurface alloy layer in the repassivation of the alloys. Upon passivity breakdown at high electrochemical potentials, the passive film rich in Cr oxide becomes highly defective with vacancies, and metal dissolution leads to generation of vacancies (mainly Ni) in the subsurface alloy layer. This promotes repassivation process by enhanced outward Cr diffusion strengthening the metal bond (more Cr-Ni bonds) in the subsurface alloy layer and, together with the enrichment of high valence Mo- and Nb-oxides in the passive film, lead to repassivation when the high potential is removed, which is different from Fe-rich alloys.</div></div>\",\"PeriodicalId\":290,\"journal\":{\"name\":\"Corrosion Science\",\"volume\":\"257 \",\"pages\":\"Article 113321\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Corrosion Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010938X25006493\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corrosion Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010938X25006493","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Transpassive-repassivation process of Ni-base superalloys: The role of hidden subsurface alloy layer
Passivity refers to spontaneous formation of a passive film on the surface of metals. High stability of the passive film on advanced alloys relies on the repassivation ability of the alloys in corrosive environments. Two Ni-base superalloys (Ni-22Cr-9Mo-5Fe-2Nb and Ni-18Cr-3Mo-20Fe-5Nb) are studied to elucidate the mechanism of repassivation through a combination of multimodal in-situ synchrotron X-ray measurements, electrochemical measurements, and first principles calculations. The synchrotron X-ray analyses enabled in-situ probing of the passive film and the hidden subsurface alloy layer. The results reveal chemical and structural evolutions of both the passive film and the underlying subsurface alloy layer under transpassive condition. The first principles calculations demonstrate a crucial role of the subsurface alloy layer in the repassivation of the alloys. Upon passivity breakdown at high electrochemical potentials, the passive film rich in Cr oxide becomes highly defective with vacancies, and metal dissolution leads to generation of vacancies (mainly Ni) in the subsurface alloy layer. This promotes repassivation process by enhanced outward Cr diffusion strengthening the metal bond (more Cr-Ni bonds) in the subsurface alloy layer and, together with the enrichment of high valence Mo- and Nb-oxides in the passive film, lead to repassivation when the high potential is removed, which is different from Fe-rich alloys.
期刊介绍:
Corrosion occurrence and its practical control encompass a vast array of scientific knowledge. Corrosion Science endeavors to serve as the conduit for the exchange of ideas, developments, and research across all facets of this field, encompassing both metallic and non-metallic corrosion. The scope of this international journal is broad and inclusive. Published papers span from highly theoretical inquiries to essentially practical applications, covering diverse areas such as high-temperature oxidation, passivity, anodic oxidation, biochemical corrosion, stress corrosion cracking, and corrosion control mechanisms and methodologies.
This journal publishes original papers and critical reviews across the spectrum of pure and applied corrosion, material degradation, and surface science and engineering. It serves as a crucial link connecting metallurgists, materials scientists, and researchers investigating corrosion and degradation phenomena. Join us in advancing knowledge and understanding in the vital field of corrosion science.