Nannan Lu , Zhenqi Du , Guixue Feng , Xiaodong Xin , Minghai Che , Ruibao Jia , Wenhai Chu
{"title":"全氟烷基酸污染河流沉积物微生物群落响应及耐药基因的宏基因组研究","authors":"Nannan Lu , Zhenqi Du , Guixue Feng , Xiaodong Xin , Minghai Che , Ruibao Jia , Wenhai Chu","doi":"10.1016/j.jes.2025.04.024","DOIUrl":null,"url":null,"abstract":"<div><div>Liquid-solid phase transfer promotes the interaction of perfluoroalkyl acids (PFAAs) with the microbial system of river sediments, which may affect the environmental behavior of antibiotic resistance genes (ARGs) contained in benthic environments. Sediments collected from the receiving water of the largest fluoropolymer production facility in China were analyzed to investigate the impact of PFAAs on microbial communities and ARG profiles. The main contributors to the PFAAs were perfluorooctanoic acid and perfluorobutanoic acid, whose proportions (86.9 %-93.4 %) in the downstream surface sediments affected by industrial effluents were significantly higher than in the corresponding upstream samples (53.3 %). A reduction in microbial diversity and richness was observed in the presence of high concentrations of PFAAs at the downstream sites. 144 ARG subtypes, including three high-risk subtypes (<em>bacA, aac (6′)-I</em> and <em>aadA</em>), were identified in sediment samples. The discharge of fluorochemical effluents also results in a reduction of ARG diversity at subtype level. PFAAs exert a pronounced influence on the profile of ARGs in sediment. PFAAs and water quality parameters (e.g. pH and total phosphorus) were key drivers of the microbial community composition in the sediment. The regulation of microbial communities by PFAAs may represent an important pathway by which these compounds affect ARG profiles.</div></div>","PeriodicalId":15788,"journal":{"name":"Journal of Environmental Sciences-china","volume":"160 ","pages":"Pages 300-307"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metagenomic investigations of microbial community response and antibiotic resistance genes in river sediments polluted by perfluoroalkyl acids\",\"authors\":\"Nannan Lu , Zhenqi Du , Guixue Feng , Xiaodong Xin , Minghai Che , Ruibao Jia , Wenhai Chu\",\"doi\":\"10.1016/j.jes.2025.04.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Liquid-solid phase transfer promotes the interaction of perfluoroalkyl acids (PFAAs) with the microbial system of river sediments, which may affect the environmental behavior of antibiotic resistance genes (ARGs) contained in benthic environments. Sediments collected from the receiving water of the largest fluoropolymer production facility in China were analyzed to investigate the impact of PFAAs on microbial communities and ARG profiles. The main contributors to the PFAAs were perfluorooctanoic acid and perfluorobutanoic acid, whose proportions (86.9 %-93.4 %) in the downstream surface sediments affected by industrial effluents were significantly higher than in the corresponding upstream samples (53.3 %). A reduction in microbial diversity and richness was observed in the presence of high concentrations of PFAAs at the downstream sites. 144 ARG subtypes, including three high-risk subtypes (<em>bacA, aac (6′)-I</em> and <em>aadA</em>), were identified in sediment samples. The discharge of fluorochemical effluents also results in a reduction of ARG diversity at subtype level. PFAAs exert a pronounced influence on the profile of ARGs in sediment. PFAAs and water quality parameters (e.g. pH and total phosphorus) were key drivers of the microbial community composition in the sediment. The regulation of microbial communities by PFAAs may represent an important pathway by which these compounds affect ARG profiles.</div></div>\",\"PeriodicalId\":15788,\"journal\":{\"name\":\"Journal of Environmental Sciences-china\",\"volume\":\"160 \",\"pages\":\"Pages 300-307\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Sciences-china\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1001074225002025\",\"RegionNum\":2,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Sciences-china","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1001074225002025","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Metagenomic investigations of microbial community response and antibiotic resistance genes in river sediments polluted by perfluoroalkyl acids
Liquid-solid phase transfer promotes the interaction of perfluoroalkyl acids (PFAAs) with the microbial system of river sediments, which may affect the environmental behavior of antibiotic resistance genes (ARGs) contained in benthic environments. Sediments collected from the receiving water of the largest fluoropolymer production facility in China were analyzed to investigate the impact of PFAAs on microbial communities and ARG profiles. The main contributors to the PFAAs were perfluorooctanoic acid and perfluorobutanoic acid, whose proportions (86.9 %-93.4 %) in the downstream surface sediments affected by industrial effluents were significantly higher than in the corresponding upstream samples (53.3 %). A reduction in microbial diversity and richness was observed in the presence of high concentrations of PFAAs at the downstream sites. 144 ARG subtypes, including three high-risk subtypes (bacA, aac (6′)-I and aadA), were identified in sediment samples. The discharge of fluorochemical effluents also results in a reduction of ARG diversity at subtype level. PFAAs exert a pronounced influence on the profile of ARGs in sediment. PFAAs and water quality parameters (e.g. pH and total phosphorus) were key drivers of the microbial community composition in the sediment. The regulation of microbial communities by PFAAs may represent an important pathway by which these compounds affect ARG profiles.
期刊介绍:
The Journal of Environmental Sciences is an international journal started in 1989. The journal is devoted to publish original, peer-reviewed research papers on main aspects of environmental sciences, such as environmental chemistry, environmental biology, ecology, geosciences and environmental physics. Appropriate subjects include basic and applied research on atmospheric, terrestrial and aquatic environments, pollution control and abatement technology, conservation of natural resources, environmental health and toxicology. Announcements of international environmental science meetings and other recent information are also included.