从调制吸收发射技术中获取温度和消光系数:实际光收集、自吸收、内散射和有限空间分辨率的影响

IF 1.9 3区 物理与天体物理 Q2 OPTICS
Rajat Sawanni, Ömer L. Gülder
{"title":"从调制吸收发射技术中获取温度和消光系数:实际光收集、自吸收、内散射和有限空间分辨率的影响","authors":"Rajat Sawanni,&nbsp;Ömer L. Gülder","doi":"10.1016/j.jqsrt.2025.109662","DOIUrl":null,"url":null,"abstract":"<div><div>Light extinction and emission measurements in soot-laden flames have extensive application for axisymmetric fields where Abel inversion can de-convolve the radial field. The simplified treatment of the radiative transfer equation typically ignores the contributions from signal trapping, in-scattering, physical light collection systems, and finite spatial resolution. A backward Monte Carlo ray tracing methodology is implemented to gauge the validity of these assumptions for high pressure counterflow diffusion flames (CDFs) modelled as an axisymmetric, non-homogeneous, anisotropic, attenuating, and emitting media. Results show that the practical light collection angle is an important parameter with <span><math><mrow><mo>cot</mo><mi>θ</mi><mo>=</mo><mi>α</mi><mo>&lt;</mo><mn>107</mn></mrow></math></span> resulting in errors larger than 5% whereas the optical design in terms of telecentric and non-telecentric system has nominal effects. The in-scattering contributions are noted to be large for high pressure CDFs with measured extinction coefficients close to absorption coefficients at smaller wavelengths. Signal trapping is also larger for such flames and can cause <span><math><mrow><mo>∼</mo><mn>50</mn><mtext>%</mtext></mrow></math></span> reduction in recovered absolute radiance for <span><math><mrow><mi>λ</mi><mo>=</mo><mtext>650</mtext><mspace></mspace><mtext>nm</mtext></mrow></math></span>. A correction methodology for signal trapping is proposed and is noted to recover the unattenuated signal, albeit with slight over-predictions. The temperature estimates using uncorrected radiance can under-predict actual temperatures by <span><math><mrow><mo>∼</mo><mtext>150</mtext><mspace></mspace><mtext>K</mtext></mrow></math></span> for the highly sooting flame while the corrected radiance over-predicts it by <span><math><mrow><mo>∼</mo><mtext>25</mtext><mspace></mspace><mtext>K</mtext></mrow></math></span>. Finite spatial resolution is also noted to cause a 23% reduction in peak extinction coefficients at <span><math><mrow><mi>λ</mi><mo>=</mo><mtext>900</mtext><mspace></mspace><mtext>nm</mtext></mrow></math></span>, the error in which reduces with improved spatial resolution. Spectral disparity in spatial resolution also causes errors in temperature gradients and can over-predict the measured temperatures by <span><math><mrow><mo>∼</mo><mtext>50</mtext><mspace></mspace><mtext>K</mtext></mrow></math></span>.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"347 ","pages":"Article 109662"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Retrieval of temperature and extinction coefficient from modulated absorption emission technique: Effects of practical light collection, self-absorption, in-scattering, and finite spatial resolution\",\"authors\":\"Rajat Sawanni,&nbsp;Ömer L. Gülder\",\"doi\":\"10.1016/j.jqsrt.2025.109662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Light extinction and emission measurements in soot-laden flames have extensive application for axisymmetric fields where Abel inversion can de-convolve the radial field. The simplified treatment of the radiative transfer equation typically ignores the contributions from signal trapping, in-scattering, physical light collection systems, and finite spatial resolution. A backward Monte Carlo ray tracing methodology is implemented to gauge the validity of these assumptions for high pressure counterflow diffusion flames (CDFs) modelled as an axisymmetric, non-homogeneous, anisotropic, attenuating, and emitting media. Results show that the practical light collection angle is an important parameter with <span><math><mrow><mo>cot</mo><mi>θ</mi><mo>=</mo><mi>α</mi><mo>&lt;</mo><mn>107</mn></mrow></math></span> resulting in errors larger than 5% whereas the optical design in terms of telecentric and non-telecentric system has nominal effects. The in-scattering contributions are noted to be large for high pressure CDFs with measured extinction coefficients close to absorption coefficients at smaller wavelengths. Signal trapping is also larger for such flames and can cause <span><math><mrow><mo>∼</mo><mn>50</mn><mtext>%</mtext></mrow></math></span> reduction in recovered absolute radiance for <span><math><mrow><mi>λ</mi><mo>=</mo><mtext>650</mtext><mspace></mspace><mtext>nm</mtext></mrow></math></span>. A correction methodology for signal trapping is proposed and is noted to recover the unattenuated signal, albeit with slight over-predictions. The temperature estimates using uncorrected radiance can under-predict actual temperatures by <span><math><mrow><mo>∼</mo><mtext>150</mtext><mspace></mspace><mtext>K</mtext></mrow></math></span> for the highly sooting flame while the corrected radiance over-predicts it by <span><math><mrow><mo>∼</mo><mtext>25</mtext><mspace></mspace><mtext>K</mtext></mrow></math></span>. Finite spatial resolution is also noted to cause a 23% reduction in peak extinction coefficients at <span><math><mrow><mi>λ</mi><mo>=</mo><mtext>900</mtext><mspace></mspace><mtext>nm</mtext></mrow></math></span>, the error in which reduces with improved spatial resolution. Spectral disparity in spatial resolution also causes errors in temperature gradients and can over-predict the measured temperatures by <span><math><mrow><mo>∼</mo><mtext>50</mtext><mspace></mspace><mtext>K</mtext></mrow></math></span>.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"347 \",\"pages\":\"Article 109662\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022407325003243\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022407325003243","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

含烟火焰的消光和发射测量在轴对称场中有广泛的应用,其中阿贝尔反演可以对径向场进行反卷积。对辐射传递方程的简化处理通常忽略了信号捕获、内散射、物理光收集系统和有限空间分辨率的贡献。采用一种反向蒙特卡罗射线追踪方法,对轴对称、非均匀、各向异性、衰减和发射介质的高压逆流扩散火焰(CDFs)进行了模拟,以衡量这些假设的有效性。结果表明,实际集光角是一个重要的参数,其cotta =α<;107导致误差大于5%,而远心和非远心系统的光学设计影响较小。在较小波长处测量到的消光系数接近吸收系数的高压CDFs中,内散射的贡献很大。这种火焰的信号捕获也更大,并且可能导致λ=650nm时恢复的绝对辐射减少约50%。提出了一种信号捕获的校正方法,并指出可以恢复未衰减的信号,尽管有轻微的过度预测。使用未校正的辐照度估算的温度对高度起烟火焰的实际温度的预测低于~ 150K,而校正后的辐照度对实际温度的预测过高~ 25K。有限的空间分辨率也会导致λ=900nm处的峰消光系数降低23%,其误差随着空间分辨率的提高而降低。空间分辨率的光谱差异也会导致温度梯度的误差,并可能对测量温度的预测过高~ 50K。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Retrieval of temperature and extinction coefficient from modulated absorption emission technique: Effects of practical light collection, self-absorption, in-scattering, and finite spatial resolution
Light extinction and emission measurements in soot-laden flames have extensive application for axisymmetric fields where Abel inversion can de-convolve the radial field. The simplified treatment of the radiative transfer equation typically ignores the contributions from signal trapping, in-scattering, physical light collection systems, and finite spatial resolution. A backward Monte Carlo ray tracing methodology is implemented to gauge the validity of these assumptions for high pressure counterflow diffusion flames (CDFs) modelled as an axisymmetric, non-homogeneous, anisotropic, attenuating, and emitting media. Results show that the practical light collection angle is an important parameter with cotθ=α<107 resulting in errors larger than 5% whereas the optical design in terms of telecentric and non-telecentric system has nominal effects. The in-scattering contributions are noted to be large for high pressure CDFs with measured extinction coefficients close to absorption coefficients at smaller wavelengths. Signal trapping is also larger for such flames and can cause 50% reduction in recovered absolute radiance for λ=650nm. A correction methodology for signal trapping is proposed and is noted to recover the unattenuated signal, albeit with slight over-predictions. The temperature estimates using uncorrected radiance can under-predict actual temperatures by 150K for the highly sooting flame while the corrected radiance over-predicts it by 25K. Finite spatial resolution is also noted to cause a 23% reduction in peak extinction coefficients at λ=900nm, the error in which reduces with improved spatial resolution. Spectral disparity in spatial resolution also causes errors in temperature gradients and can over-predict the measured temperatures by 50K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信