非互易系统平衡态的持续能量流

IF 1.9 3区 物理与天体物理 Q2 OPTICS
Svend-Age Biehs , Ivan Latella
{"title":"非互易系统平衡态的持续能量流","authors":"Svend-Age Biehs ,&nbsp;Ivan Latella","doi":"10.1016/j.jqsrt.2025.109660","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate the properties of the mean Poynting vector in global thermal equilibrium, which can be non-zero in non-reciprocal electromagnetic systems. Using dyadic Green’s functions and the fluctuation–dissipation theorem, we provide a general proof that the mean Poynting vector is divergence-free under equilibrium conditions. Relying on this proof, we explicitly demonstrate that for systems where a normal mode expansion of the Green’s function is applicable, the divergence of the equilibrium mean Poynting vector vanishes. As concrete examples, we also examine the equilibrium mean Poynting vector near a planar non-reciprocal substrate and in configurations involving an arbitrary number of dipolar non-reciprocal objects in free space. Finally, we argue that the so-called persistent heat current, while present in equilibrium, cannot be detected through out-of-equilibrium heat transfer measurements.</div></div>","PeriodicalId":16935,"journal":{"name":"Journal of Quantitative Spectroscopy & Radiative Transfer","volume":"347 ","pages":"Article 109660"},"PeriodicalIF":1.9000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On persistent energy currents at equilibrium in non-reciprocal systems\",\"authors\":\"Svend-Age Biehs ,&nbsp;Ivan Latella\",\"doi\":\"10.1016/j.jqsrt.2025.109660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate the properties of the mean Poynting vector in global thermal equilibrium, which can be non-zero in non-reciprocal electromagnetic systems. Using dyadic Green’s functions and the fluctuation–dissipation theorem, we provide a general proof that the mean Poynting vector is divergence-free under equilibrium conditions. Relying on this proof, we explicitly demonstrate that for systems where a normal mode expansion of the Green’s function is applicable, the divergence of the equilibrium mean Poynting vector vanishes. As concrete examples, we also examine the equilibrium mean Poynting vector near a planar non-reciprocal substrate and in configurations involving an arbitrary number of dipolar non-reciprocal objects in free space. Finally, we argue that the so-called persistent heat current, while present in equilibrium, cannot be detected through out-of-equilibrium heat transfer measurements.</div></div>\",\"PeriodicalId\":16935,\"journal\":{\"name\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"volume\":\"347 \",\"pages\":\"Article 109660\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Quantitative Spectroscopy & Radiative Transfer\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240732500322X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Spectroscopy & Radiative Transfer","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240732500322X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了非互易电磁系统中全局热平衡中平均波印亭矢量的非零性质。利用并矢格林函数和涨落耗散定理,给出了平衡条件下平均Poynting向量无散度的一般证明。根据这一证明,我们明确地证明了对于格林函数的正态展开式适用的系统,平衡平均Poynting向量的散度消失。作为具体的例子,我们还研究了平面非互反基底附近的平衡平均坡印亭矢量和涉及自由空间中任意数量的偶极非互反物体的构型。最后,我们认为所谓的持续热流,虽然存在于平衡状态,但不能通过非平衡传热测量来检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On persistent energy currents at equilibrium in non-reciprocal systems
We investigate the properties of the mean Poynting vector in global thermal equilibrium, which can be non-zero in non-reciprocal electromagnetic systems. Using dyadic Green’s functions and the fluctuation–dissipation theorem, we provide a general proof that the mean Poynting vector is divergence-free under equilibrium conditions. Relying on this proof, we explicitly demonstrate that for systems where a normal mode expansion of the Green’s function is applicable, the divergence of the equilibrium mean Poynting vector vanishes. As concrete examples, we also examine the equilibrium mean Poynting vector near a planar non-reciprocal substrate and in configurations involving an arbitrary number of dipolar non-reciprocal objects in free space. Finally, we argue that the so-called persistent heat current, while present in equilibrium, cannot be detected through out-of-equilibrium heat transfer measurements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.30
自引率
21.70%
发文量
273
审稿时长
58 days
期刊介绍: Papers with the following subject areas are suitable for publication in the Journal of Quantitative Spectroscopy and Radiative Transfer: - Theoretical and experimental aspects of the spectra of atoms, molecules, ions, and plasmas. - Spectral lineshape studies including models and computational algorithms. - Atmospheric spectroscopy. - Theoretical and experimental aspects of light scattering. - Application of light scattering in particle characterization and remote sensing. - Application of light scattering in biological sciences and medicine. - Radiative transfer in absorbing, emitting, and scattering media. - Radiative transfer in stochastic media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信