高效可伸缩阴离子交换膜水电解用多金属氧硫化物电催化剂的合理设计

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Ga-hwa Kim , Rajavel Velayutham , Su-hyeon Kim , John D. Rodney , Amol Marotrao Kale , Yangho Choi , Young-Ju Lee , Won-Je Cho , Keeyoung Jung , R.M. Bommi , Byung Chul Kim
{"title":"高效可伸缩阴离子交换膜水电解用多金属氧硫化物电催化剂的合理设计","authors":"Ga-hwa Kim ,&nbsp;Rajavel Velayutham ,&nbsp;Su-hyeon Kim ,&nbsp;John D. Rodney ,&nbsp;Amol Marotrao Kale ,&nbsp;Yangho Choi ,&nbsp;Young-Ju Lee ,&nbsp;Won-Je Cho ,&nbsp;Keeyoung Jung ,&nbsp;R.M. Bommi ,&nbsp;Byung Chul Kim","doi":"10.1016/j.susmat.2025.e01656","DOIUrl":null,"url":null,"abstract":"<div><div>The rational design of efficient, non-precious electrocatalysts for anion exchange membrane water electrolysis (AEMWE) remains critical for sustainable hydrogen production. This work aims to develop cost-effective, noble metal-free transition metal nano electrocatalysts for the simultaneous generation of green hydrogen through water splitting. Herein, we synthesize multi-metal transitional oxysulfide Fe<sub>0.2</sub>Cu<sub>0.2</sub>Co<sub>0.2</sub>Zn<sub>0.2</sub>Ni<sub>0.2</sub> (FCCZN) electrocatalysts via solution combustion synthesis and chemical bath deposition, resulting in nanoball-nanosheet architectures. Cu-FCCZN achieves a hydrogen evolution reaction (HER) overpotential of 70 mV at 10 mA cm<sup>−2</sup> with a Tafel slope of 87.92 mV dec<sup>−1</sup>, while Fe-FCCZN requires 273 mV for the oxygen evolution reaction (OER) at 10 mA cm<sup>−2</sup>. The optimized Cu-FCCZN and Fe-FCCZN exhibit excellent operational stability for over 100 h at a current density of 200 mA cm<sup>−2</sup>. Structural analysis reveals interfacial oxygen/sulfur-rich active sites that enhance conductivity and stabilize intermediates. Moreover, a scalable 16 cm<sup>2</sup> overall AEM water electrolyzer constructed using a Cu-FCCZN||Fe-FCCZN electrocatalyst operates stably for 250 h at 200 mA cm<sup>−2</sup> with a cell voltage of 4.41 V in 1 M KOH, outperforming reported noble-metal-free devices. This work provides a cost-effective strategy for designing high-performance electrocatalysts, advancing industrial-scale green hydrogen production.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"46 ","pages":"Article e01656"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rational design of multi-metal oxysulfide electrocatalysts for efficient scalable anion exchange membrane water electrolyzer\",\"authors\":\"Ga-hwa Kim ,&nbsp;Rajavel Velayutham ,&nbsp;Su-hyeon Kim ,&nbsp;John D. Rodney ,&nbsp;Amol Marotrao Kale ,&nbsp;Yangho Choi ,&nbsp;Young-Ju Lee ,&nbsp;Won-Je Cho ,&nbsp;Keeyoung Jung ,&nbsp;R.M. Bommi ,&nbsp;Byung Chul Kim\",\"doi\":\"10.1016/j.susmat.2025.e01656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The rational design of efficient, non-precious electrocatalysts for anion exchange membrane water electrolysis (AEMWE) remains critical for sustainable hydrogen production. This work aims to develop cost-effective, noble metal-free transition metal nano electrocatalysts for the simultaneous generation of green hydrogen through water splitting. Herein, we synthesize multi-metal transitional oxysulfide Fe<sub>0.2</sub>Cu<sub>0.2</sub>Co<sub>0.2</sub>Zn<sub>0.2</sub>Ni<sub>0.2</sub> (FCCZN) electrocatalysts via solution combustion synthesis and chemical bath deposition, resulting in nanoball-nanosheet architectures. Cu-FCCZN achieves a hydrogen evolution reaction (HER) overpotential of 70 mV at 10 mA cm<sup>−2</sup> with a Tafel slope of 87.92 mV dec<sup>−1</sup>, while Fe-FCCZN requires 273 mV for the oxygen evolution reaction (OER) at 10 mA cm<sup>−2</sup>. The optimized Cu-FCCZN and Fe-FCCZN exhibit excellent operational stability for over 100 h at a current density of 200 mA cm<sup>−2</sup>. Structural analysis reveals interfacial oxygen/sulfur-rich active sites that enhance conductivity and stabilize intermediates. Moreover, a scalable 16 cm<sup>2</sup> overall AEM water electrolyzer constructed using a Cu-FCCZN||Fe-FCCZN electrocatalyst operates stably for 250 h at 200 mA cm<sup>−2</sup> with a cell voltage of 4.41 V in 1 M KOH, outperforming reported noble-metal-free devices. This work provides a cost-effective strategy for designing high-performance electrocatalysts, advancing industrial-scale green hydrogen production.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"46 \",\"pages\":\"Article e01656\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-09-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725004245\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725004245","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

合理设计高效、廉价的阴离子交换膜电解电催化剂对可持续制氢至关重要。本研究旨在开发具有成本效益的、不含贵金属的过渡金属纳米电催化剂,用于通过水裂解同时生成绿色氢。本文通过溶液燃烧合成和化学浴沉积制备了多金属过渡态氧化硫化物Fe0.2Cu0.2Co0.2Zn0.2Ni0.2 (FCCZN)电催化剂,得到了纳米球-纳米片结构。Cu-FCCZN在10 mA cm−2下的析氢反应(HER)过电位为70 mV, Tafel斜率为87.92 mV dec−1,而Fe-FCCZN在10 mA cm−2下的析氧反应(OER)需要273 mV。优化后的Cu-FCCZN和Fe-FCCZN在200 mA cm−2电流密度下表现出100 h以上的优异稳定性。结构分析表明,界面富氧/富硫活性位点增强了电导率并稳定了中间体。此外,使用Cu-FCCZN b| Fe-FCCZN电催化剂构建的可扩展的16 cm2整体AEM水电解槽在200 mA cm - 2下,在1 M KOH下,电池电压为4.41 V,稳定运行250 h,优于报道的无贵金属器件。这项工作为设计高性能电催化剂,推进工业规模的绿色制氢提供了一种经济有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational design of multi-metal oxysulfide electrocatalysts for efficient scalable anion exchange membrane water electrolyzer

Rational design of multi-metal oxysulfide electrocatalysts for efficient scalable anion exchange membrane water electrolyzer
The rational design of efficient, non-precious electrocatalysts for anion exchange membrane water electrolysis (AEMWE) remains critical for sustainable hydrogen production. This work aims to develop cost-effective, noble metal-free transition metal nano electrocatalysts for the simultaneous generation of green hydrogen through water splitting. Herein, we synthesize multi-metal transitional oxysulfide Fe0.2Cu0.2Co0.2Zn0.2Ni0.2 (FCCZN) electrocatalysts via solution combustion synthesis and chemical bath deposition, resulting in nanoball-nanosheet architectures. Cu-FCCZN achieves a hydrogen evolution reaction (HER) overpotential of 70 mV at 10 mA cm−2 with a Tafel slope of 87.92 mV dec−1, while Fe-FCCZN requires 273 mV for the oxygen evolution reaction (OER) at 10 mA cm−2. The optimized Cu-FCCZN and Fe-FCCZN exhibit excellent operational stability for over 100 h at a current density of 200 mA cm−2. Structural analysis reveals interfacial oxygen/sulfur-rich active sites that enhance conductivity and stabilize intermediates. Moreover, a scalable 16 cm2 overall AEM water electrolyzer constructed using a Cu-FCCZN||Fe-FCCZN electrocatalyst operates stably for 250 h at 200 mA cm−2 with a cell voltage of 4.41 V in 1 M KOH, outperforming reported noble-metal-free devices. This work provides a cost-effective strategy for designing high-performance electrocatalysts, advancing industrial-scale green hydrogen production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信