高碘酸盐氧化和壳聚糖接枝对棉花表面功能化的研究

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Feiyang Zheng , Chunguang Liang , Mohammad Shahid , Yuyang Zhou , Wei Chen , Wanli Liu , Xianglong Li , Chang Liu
{"title":"高碘酸盐氧化和壳聚糖接枝对棉花表面功能化的研究","authors":"Feiyang Zheng ,&nbsp;Chunguang Liang ,&nbsp;Mohammad Shahid ,&nbsp;Yuyang Zhou ,&nbsp;Wei Chen ,&nbsp;Wanli Liu ,&nbsp;Xianglong Li ,&nbsp;Chang Liu","doi":"10.1016/j.susmat.2025.e01642","DOIUrl":null,"url":null,"abstract":"<div><div>Abstract</div><div>This study presents a fully bio-based and sustainable surface functionalization strategy to enhance lac dye adsorption on cotton fabric through a two-step modification involving periodate oxidation followed by chitosan grafting. Cotton fibers develop a negative charge in aqueous dyeing media, and the anionic nature of lac dye leads to electrostatic repulsion and limited uptake. To address this, sodium periodate was used to oxidize the cotton surface, introducing aldehyde groups that enabled covalent grafting of chitosan—a cationic, biologically active polysaccharide—via Schiff base formation. The resulting amine-rich surface improved dye–fiber interaction under mildly acidic conditions. Surface characterization through zeta potential analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy confirmed successful modification without damaging fiber morphology. Adsorption kinetics followed a pseudo-second-order model, indicating chemisorption, with optimal dye uptake at pH 4–5 and 90 °C. The functionalized cotton also exhibited excellent ultraviolet protection (UPF rating) and strong antibacterial activity against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>. This work highlights the potential of chitosan as a functional biological macromolecule in developing sustainable, multifunctional textiles through eco-friendly processing.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"46 ","pages":"Article e01642"},"PeriodicalIF":9.2000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bio-based surface functionalization of cotton via periodate oxidation and chitosan grafting for sustainable lac dyeing and multifunctional performance\",\"authors\":\"Feiyang Zheng ,&nbsp;Chunguang Liang ,&nbsp;Mohammad Shahid ,&nbsp;Yuyang Zhou ,&nbsp;Wei Chen ,&nbsp;Wanli Liu ,&nbsp;Xianglong Li ,&nbsp;Chang Liu\",\"doi\":\"10.1016/j.susmat.2025.e01642\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Abstract</div><div>This study presents a fully bio-based and sustainable surface functionalization strategy to enhance lac dye adsorption on cotton fabric through a two-step modification involving periodate oxidation followed by chitosan grafting. Cotton fibers develop a negative charge in aqueous dyeing media, and the anionic nature of lac dye leads to electrostatic repulsion and limited uptake. To address this, sodium periodate was used to oxidize the cotton surface, introducing aldehyde groups that enabled covalent grafting of chitosan—a cationic, biologically active polysaccharide—via Schiff base formation. The resulting amine-rich surface improved dye–fiber interaction under mildly acidic conditions. Surface characterization through zeta potential analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy confirmed successful modification without damaging fiber morphology. Adsorption kinetics followed a pseudo-second-order model, indicating chemisorption, with optimal dye uptake at pH 4–5 and 90 °C. The functionalized cotton also exhibited excellent ultraviolet protection (UPF rating) and strong antibacterial activity against <em>Escherichia coli</em> and <em>Staphylococcus aureus</em>. This work highlights the potential of chitosan as a functional biological macromolecule in developing sustainable, multifunctional textiles through eco-friendly processing.</div></div>\",\"PeriodicalId\":22097,\"journal\":{\"name\":\"Sustainable Materials and Technologies\",\"volume\":\"46 \",\"pages\":\"Article e01642\"},\"PeriodicalIF\":9.2000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Materials and Technologies\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214993725004105\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725004105","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本研究通过高碘酸盐氧化和壳聚糖接枝两步改性,提出了一种完全生物基和可持续的表面功能化策略,以增强棉织物对紫胶染料的吸附。棉纤维在水性染色介质中产生负电荷,而紫胶染料的阴离子性质导致静电排斥和有限的吸收。为了解决这个问题,高碘酸钠被用来氧化棉花表面,引入醛基团,使壳聚糖-一种阳离子,生物活性多糖-通过席夫碱形成共价接枝。所得的富胺表面在弱酸性条件下改善了染料与纤维的相互作用。表面表征通过zeta电位分析,x射线光电子能谱和扫描电镜证实了成功的改性,而没有破坏纤维形态。吸附动力学遵循伪二级模型,表明化学吸附,在pH 4-5和90°C时染料吸附最佳。功能化棉具有良好的紫外线防护性能(UPF等级),对大肠杆菌和金黄色葡萄球菌具有较强的抗菌活性。这项工作强调了壳聚糖作为一种功能性生物大分子在通过环保加工开发可持续、多功能纺织品方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bio-based surface functionalization of cotton via periodate oxidation and chitosan grafting for sustainable lac dyeing and multifunctional performance
Abstract
This study presents a fully bio-based and sustainable surface functionalization strategy to enhance lac dye adsorption on cotton fabric through a two-step modification involving periodate oxidation followed by chitosan grafting. Cotton fibers develop a negative charge in aqueous dyeing media, and the anionic nature of lac dye leads to electrostatic repulsion and limited uptake. To address this, sodium periodate was used to oxidize the cotton surface, introducing aldehyde groups that enabled covalent grafting of chitosan—a cationic, biologically active polysaccharide—via Schiff base formation. The resulting amine-rich surface improved dye–fiber interaction under mildly acidic conditions. Surface characterization through zeta potential analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy confirmed successful modification without damaging fiber morphology. Adsorption kinetics followed a pseudo-second-order model, indicating chemisorption, with optimal dye uptake at pH 4–5 and 90 °C. The functionalized cotton also exhibited excellent ultraviolet protection (UPF rating) and strong antibacterial activity against Escherichia coli and Staphylococcus aureus. This work highlights the potential of chitosan as a functional biological macromolecule in developing sustainable, multifunctional textiles through eco-friendly processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信