电弧定向能沉积高塑性Cu-10Fe非混相合金

Xinglong Di , Siyi Peng , Yueling Guo , Shuijun Ye , Longxi Luo , Bo Yin , Changmeng Liu
{"title":"电弧定向能沉积高塑性Cu-10Fe非混相合金","authors":"Xinglong Di ,&nbsp;Siyi Peng ,&nbsp;Yueling Guo ,&nbsp;Shuijun Ye ,&nbsp;Longxi Luo ,&nbsp;Bo Yin ,&nbsp;Changmeng Liu","doi":"10.1016/j.smmf.2025.100095","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, a thin-wall Cu-10Fe (10 wt%) immiscible alloy component is fabricated by wire-arc directed energy deposition (WA-DED), leveraging the high energy absorption of the electric arc for copper alloys and its high deposition rate. Results show that Liquid-Liquid Phase Separation (LLPS) occurs upon solidification during WA-DED, and a hierarchical microstructure is formed, including micro-sized and nano-sized Fe particles, nano-sized Cu particles, as well as Fe dendrites embedded in the Cu matrix. A slight mechanical property anisotropy is found via tensile testing, and the horizontal specimen has superior strength and ductility. The decent ductility, 37.1 ± 0.9 % in elongation, is achieved with a ductile dimple fracture mode. It is associated with the relatively fine grains, the hierarchical microstructure and the formation of twins. Our pioneering investigation on the microstructure and mechanical property of Cu-10Fe alloy via WA-DED provides an applicable pathway for the efficient fabrication of high-performance Cu-based immiscible alloys.</div></div>","PeriodicalId":101164,"journal":{"name":"Smart Materials in Manufacturing","volume":"3 ","pages":"Article 100095"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wire-arc directed energy depositing high-ductility Cu-10Fe immiscible alloy with a hierarchical microstructure\",\"authors\":\"Xinglong Di ,&nbsp;Siyi Peng ,&nbsp;Yueling Guo ,&nbsp;Shuijun Ye ,&nbsp;Longxi Luo ,&nbsp;Bo Yin ,&nbsp;Changmeng Liu\",\"doi\":\"10.1016/j.smmf.2025.100095\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, a thin-wall Cu-10Fe (10 wt%) immiscible alloy component is fabricated by wire-arc directed energy deposition (WA-DED), leveraging the high energy absorption of the electric arc for copper alloys and its high deposition rate. Results show that Liquid-Liquid Phase Separation (LLPS) occurs upon solidification during WA-DED, and a hierarchical microstructure is formed, including micro-sized and nano-sized Fe particles, nano-sized Cu particles, as well as Fe dendrites embedded in the Cu matrix. A slight mechanical property anisotropy is found via tensile testing, and the horizontal specimen has superior strength and ductility. The decent ductility, 37.1 ± 0.9 % in elongation, is achieved with a ductile dimple fracture mode. It is associated with the relatively fine grains, the hierarchical microstructure and the formation of twins. Our pioneering investigation on the microstructure and mechanical property of Cu-10Fe alloy via WA-DED provides an applicable pathway for the efficient fabrication of high-performance Cu-based immiscible alloys.</div></div>\",\"PeriodicalId\":101164,\"journal\":{\"name\":\"Smart Materials in Manufacturing\",\"volume\":\"3 \",\"pages\":\"Article 100095\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Materials in Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277281022500025X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Materials in Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277281022500025X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用电弧对铜合金的高能量吸收和高沉积速率,利用线弧定向能沉积(WA-DED)技术制备了Cu-10Fe (10 wt%)不混相薄壁合金组件。结果表明:在WA-DED过程中,凝固过程发生了液-液相分离(LLPS),形成了由微、纳米级Fe颗粒、纳米级Cu颗粒以及嵌套在Cu基体中的Fe枝晶组成的分层组织;拉伸试验发现其力学性能有轻微的各向异性,水平试样具有较好的强度和延性。良好的延展性,伸长率为37.1%±0.9%,采用韧性韧窝断裂模式。它与相对细小的晶粒、分层组织和孪晶的形成有关。通过WA-DED对Cu-10Fe合金的显微组织和力学性能进行了开创性的研究,为高效制备高性能cu基非混相合金提供了一条可行的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Wire-arc directed energy depositing high-ductility Cu-10Fe immiscible alloy with a hierarchical microstructure

Wire-arc directed energy depositing high-ductility Cu-10Fe immiscible alloy with a hierarchical microstructure
In this work, a thin-wall Cu-10Fe (10 wt%) immiscible alloy component is fabricated by wire-arc directed energy deposition (WA-DED), leveraging the high energy absorption of the electric arc for copper alloys and its high deposition rate. Results show that Liquid-Liquid Phase Separation (LLPS) occurs upon solidification during WA-DED, and a hierarchical microstructure is formed, including micro-sized and nano-sized Fe particles, nano-sized Cu particles, as well as Fe dendrites embedded in the Cu matrix. A slight mechanical property anisotropy is found via tensile testing, and the horizontal specimen has superior strength and ductility. The decent ductility, 37.1 ± 0.9 % in elongation, is achieved with a ductile dimple fracture mode. It is associated with the relatively fine grains, the hierarchical microstructure and the formation of twins. Our pioneering investigation on the microstructure and mechanical property of Cu-10Fe alloy via WA-DED provides an applicable pathway for the efficient fabrication of high-performance Cu-based immiscible alloys.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信