提高植物乳杆菌PC4发酵绿豆乳抗氧化性能和香气品质的机器学习策略比较

IF 5.2 1区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY
Ping Tang, Aliah Zannierah Mohsin, Nurul Hanisah Juhari, Anis Shobirin Meor Hussin
{"title":"提高植物乳杆菌PC4发酵绿豆乳抗氧化性能和香气品质的机器学习策略比较","authors":"Ping Tang,&nbsp;Aliah Zannierah Mohsin,&nbsp;Nurul Hanisah Juhari,&nbsp;Anis Shobirin Meor Hussin","doi":"10.1016/j.ijfoodmicro.2025.111443","DOIUrl":null,"url":null,"abstract":"<div><div>This study compares least squares support vector machine (LSSVM) and artificial neural network (ANN) models, integrated with the NSGA-II algorithm, to optimize the fermentation of mung bean milk by <em>Lactobacillus plantarum</em> PC4. Given its superior predictive accuracy and generalization, LSSVM was selected as the final model for multi-objective optimization and experimental validation. LSSVM consistently outperformed ANN in predictive accuracy and generalization, particularly under data-scarce conditions, yielding R<sup>2</sup> values exceeding 0.97 across all responses. Optimal fermentation conditions predicted by LSSVM (6.0 h, 37.0 °C, 1.99 % inoculum) were experimentally validated, showing minimal error (&lt;5 %) across most parameters. GC–MS analysis confirmed that the LSSVM-NSGA-II optimized fermentation conditions effectively suppressed off-flavor aldehydes (e.g., hexanal, nonanal) while promoting the formation of favorable volatiles, including 1-hexanol, acetoin, esters, and aromatic compounds. These targeted improvements in antioxidant and aroma profiles underscore the efficacy of this data-driven approach in enhancing both the functional and sensory attributes of plant-based fermented beverages.</div></div>","PeriodicalId":14095,"journal":{"name":"International journal of food microbiology","volume":"444 ","pages":"Article 111443"},"PeriodicalIF":5.2000,"publicationDate":"2025-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative machine learning strategies for improving antioxidant properties and aroma quality in fermented mung bean milkby Lactobacillus plantarum PC4\",\"authors\":\"Ping Tang,&nbsp;Aliah Zannierah Mohsin,&nbsp;Nurul Hanisah Juhari,&nbsp;Anis Shobirin Meor Hussin\",\"doi\":\"10.1016/j.ijfoodmicro.2025.111443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study compares least squares support vector machine (LSSVM) and artificial neural network (ANN) models, integrated with the NSGA-II algorithm, to optimize the fermentation of mung bean milk by <em>Lactobacillus plantarum</em> PC4. Given its superior predictive accuracy and generalization, LSSVM was selected as the final model for multi-objective optimization and experimental validation. LSSVM consistently outperformed ANN in predictive accuracy and generalization, particularly under data-scarce conditions, yielding R<sup>2</sup> values exceeding 0.97 across all responses. Optimal fermentation conditions predicted by LSSVM (6.0 h, 37.0 °C, 1.99 % inoculum) were experimentally validated, showing minimal error (&lt;5 %) across most parameters. GC–MS analysis confirmed that the LSSVM-NSGA-II optimized fermentation conditions effectively suppressed off-flavor aldehydes (e.g., hexanal, nonanal) while promoting the formation of favorable volatiles, including 1-hexanol, acetoin, esters, and aromatic compounds. These targeted improvements in antioxidant and aroma profiles underscore the efficacy of this data-driven approach in enhancing both the functional and sensory attributes of plant-based fermented beverages.</div></div>\",\"PeriodicalId\":14095,\"journal\":{\"name\":\"International journal of food microbiology\",\"volume\":\"444 \",\"pages\":\"Article 111443\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of food microbiology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168160525003885\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of food microbiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168160525003885","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究比较了最小二乘支持向量机(LSSVM)和人工神经网络(ANN)模型,结合NSGA-II算法,对植物乳杆菌PC4发酵绿豆乳进行了优化。鉴于LSSVM具有较好的预测精度和泛化能力,我们选择LSSVM作为最终模型进行多目标优化和实验验证。LSSVM在预测准确性和泛化方面一直优于ANN,特别是在数据稀缺的条件下,所有响应的R2值都超过0.97。实验验证了LSSVM预测的最佳发酵条件(6.0 h, 37.0°C, 1.99%接种量),大多数参数的误差最小(< 5%)。GC-MS分析证实,LSSVM-NSGA-II优化的发酵条件有效抑制了异味醛(如己醛、壬醛),同时促进了有利挥发物的形成,包括1-己醇、乙酮、酯类和芳香族化合物。这些针对抗氧化和香气特征的改进强调了这种数据驱动方法在增强植物性发酵饮料的功能和感官属性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparative machine learning strategies for improving antioxidant properties and aroma quality in fermented mung bean milkby Lactobacillus plantarum PC4
This study compares least squares support vector machine (LSSVM) and artificial neural network (ANN) models, integrated with the NSGA-II algorithm, to optimize the fermentation of mung bean milk by Lactobacillus plantarum PC4. Given its superior predictive accuracy and generalization, LSSVM was selected as the final model for multi-objective optimization and experimental validation. LSSVM consistently outperformed ANN in predictive accuracy and generalization, particularly under data-scarce conditions, yielding R2 values exceeding 0.97 across all responses. Optimal fermentation conditions predicted by LSSVM (6.0 h, 37.0 °C, 1.99 % inoculum) were experimentally validated, showing minimal error (<5 %) across most parameters. GC–MS analysis confirmed that the LSSVM-NSGA-II optimized fermentation conditions effectively suppressed off-flavor aldehydes (e.g., hexanal, nonanal) while promoting the formation of favorable volatiles, including 1-hexanol, acetoin, esters, and aromatic compounds. These targeted improvements in antioxidant and aroma profiles underscore the efficacy of this data-driven approach in enhancing both the functional and sensory attributes of plant-based fermented beverages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International journal of food microbiology
International journal of food microbiology 工程技术-食品科技
CiteScore
10.40
自引率
5.60%
发文量
322
审稿时长
65 days
期刊介绍: The International Journal of Food Microbiology publishes papers dealing with all aspects of food microbiology. Articles must present information that is novel, has high impact and interest, and is of high scientific quality. They should provide scientific or technological advancement in the specific field of interest of the journal and enhance its strong international reputation. Preliminary or confirmatory results as well as contributions not strictly related to food microbiology will not be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信