Lovindu Wijesinghe , Jann Michael Weinand , Maximilian Hoffmann , Detlef Stolten
{"title":"可再生能源供应中的破坏性事件建模:综述","authors":"Lovindu Wijesinghe , Jann Michael Weinand , Maximilian Hoffmann , Detlef Stolten","doi":"10.1016/j.seta.2025.104561","DOIUrl":null,"url":null,"abstract":"<div><div>The accelerating shift toward renewable energy necessitates robust planning frameworks that can accommodate unexpected disruptions. While various energy system modeling methods are widely used for planning and decision-making, they each have their own strengths and weaknesses in capturing uncertainty in the outcomes of disruptive event modeling. This review addresses a critical research gap by systematically analyzing how such methods quantify and mitigate the impact of disruptive events on renewable energy supply. It is the first to comprehensively assess modeling approaches specifically in this context. The study categorizes 108 disruptive events from 102 articles into four primary types: natural (e.g., floods, heatwaves), human-caused intentional (e.g., technological innovations), socio-political (e.g., wars, policy changes), and economic (e.g., interest rate shifts, carbon tax changes). Articles were selected using a PRISMA-compliant methodology from multiple sources, applying strict inclusion criteria: relevance to renewable energy, a clear focus on disruptive events, and use of modeling methods. Findings confirm the hypothesis that incorporating broader socio-economic and environmental criteria into modeling improves the robustness and realism of planning under disruptive conditions. The review shows that relying on one modeling objective such as cost often limits the ability to capture uncertainty and stakeholder concerns. Instead, models that integrate multiple criteria and generate a range of feasible solutions offer more resilient and adaptable planning outcomes. The study recommends combining complementary modeling strategies and tailoring criteria to stakeholder priorities. Such combined modeling approaches are well suited to future studies, enabling flexible, risk-informed, and context-sensitive modeling of disruptive events in renewable energy supply systems.</div></div>","PeriodicalId":56019,"journal":{"name":"Sustainable Energy Technologies and Assessments","volume":"83 ","pages":"Article 104561"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling disruptive events in renewable energy supply: A review\",\"authors\":\"Lovindu Wijesinghe , Jann Michael Weinand , Maximilian Hoffmann , Detlef Stolten\",\"doi\":\"10.1016/j.seta.2025.104561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The accelerating shift toward renewable energy necessitates robust planning frameworks that can accommodate unexpected disruptions. While various energy system modeling methods are widely used for planning and decision-making, they each have their own strengths and weaknesses in capturing uncertainty in the outcomes of disruptive event modeling. This review addresses a critical research gap by systematically analyzing how such methods quantify and mitigate the impact of disruptive events on renewable energy supply. It is the first to comprehensively assess modeling approaches specifically in this context. The study categorizes 108 disruptive events from 102 articles into four primary types: natural (e.g., floods, heatwaves), human-caused intentional (e.g., technological innovations), socio-political (e.g., wars, policy changes), and economic (e.g., interest rate shifts, carbon tax changes). Articles were selected using a PRISMA-compliant methodology from multiple sources, applying strict inclusion criteria: relevance to renewable energy, a clear focus on disruptive events, and use of modeling methods. Findings confirm the hypothesis that incorporating broader socio-economic and environmental criteria into modeling improves the robustness and realism of planning under disruptive conditions. The review shows that relying on one modeling objective such as cost often limits the ability to capture uncertainty and stakeholder concerns. Instead, models that integrate multiple criteria and generate a range of feasible solutions offer more resilient and adaptable planning outcomes. The study recommends combining complementary modeling strategies and tailoring criteria to stakeholder priorities. Such combined modeling approaches are well suited to future studies, enabling flexible, risk-informed, and context-sensitive modeling of disruptive events in renewable energy supply systems.</div></div>\",\"PeriodicalId\":56019,\"journal\":{\"name\":\"Sustainable Energy Technologies and Assessments\",\"volume\":\"83 \",\"pages\":\"Article 104561\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy Technologies and Assessments\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213138825003923\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy Technologies and Assessments","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213138825003923","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Modeling disruptive events in renewable energy supply: A review
The accelerating shift toward renewable energy necessitates robust planning frameworks that can accommodate unexpected disruptions. While various energy system modeling methods are widely used for planning and decision-making, they each have their own strengths and weaknesses in capturing uncertainty in the outcomes of disruptive event modeling. This review addresses a critical research gap by systematically analyzing how such methods quantify and mitigate the impact of disruptive events on renewable energy supply. It is the first to comprehensively assess modeling approaches specifically in this context. The study categorizes 108 disruptive events from 102 articles into four primary types: natural (e.g., floods, heatwaves), human-caused intentional (e.g., technological innovations), socio-political (e.g., wars, policy changes), and economic (e.g., interest rate shifts, carbon tax changes). Articles were selected using a PRISMA-compliant methodology from multiple sources, applying strict inclusion criteria: relevance to renewable energy, a clear focus on disruptive events, and use of modeling methods. Findings confirm the hypothesis that incorporating broader socio-economic and environmental criteria into modeling improves the robustness and realism of planning under disruptive conditions. The review shows that relying on one modeling objective such as cost often limits the ability to capture uncertainty and stakeholder concerns. Instead, models that integrate multiple criteria and generate a range of feasible solutions offer more resilient and adaptable planning outcomes. The study recommends combining complementary modeling strategies and tailoring criteria to stakeholder priorities. Such combined modeling approaches are well suited to future studies, enabling flexible, risk-informed, and context-sensitive modeling of disruptive events in renewable energy supply systems.
期刊介绍:
Encouraging a transition to a sustainable energy future is imperative for our world. Technologies that enable this shift in various sectors like transportation, heating, and power systems are of utmost importance. Sustainable Energy Technologies and Assessments welcomes papers focusing on a range of aspects and levels of technological advancements in energy generation and utilization. The aim is to reduce the negative environmental impact associated with energy production and consumption, spanning from laboratory experiments to real-world applications in the commercial sector.