MST:一种具有深度感知注意力的改进稀疏变压器,用于自动驾驶汽车中多模态摄像头-激光雷达融合

IF 3.8 Q2 TRANSPORTATION
Badri Raj Lamichhane , Bibek Paudel , Sushant Paudel , Gun Srijuntongsiri , Teerayut Horanont
{"title":"MST:一种具有深度感知注意力的改进稀疏变压器,用于自动驾驶汽车中多模态摄像头-激光雷达融合","authors":"Badri Raj Lamichhane ,&nbsp;Bibek Paudel ,&nbsp;Sushant Paudel ,&nbsp;Gun Srijuntongsiri ,&nbsp;Teerayut Horanont","doi":"10.1016/j.trip.2025.101571","DOIUrl":null,"url":null,"abstract":"<div><div>Sensor fusion plays a pivotal role in enhancing the accuracy, safety, and decision-making capabilities of autonomous vehicles by integrating camera and LiDAR data. Cameras provide rich semantic information, while LiDAR offers precise depth estimation; their fusion is crucial for robust perception in complex driving scenarios. Transformer-based models have emerged as effective tools for multimodal fusion by leveraging self-attention to capture intricate relationships between sensor data. However, traditional transformers face computational efficiency challenges with long input sequences and sparse data. To address these limitations, we propose the Modified Sparse Transformer (MST) for camera–LiDAR fusion. The MST reduces attention matrix complexity, enabling faster processing while maintaining high performance with fewer parameters. Key innovations include depth-aware attention mechanisms, cross-modal feature alignment, and dynamic instance interaction modules. These collectively enhance object detection accuracy in challenging conditions such as low visibility and dense traffic. Experiments on benchmark datasets demonstrate significant improvements in both accuracy and efficiency compared to existing methods.</div></div>","PeriodicalId":36621,"journal":{"name":"Transportation Research Interdisciplinary Perspectives","volume":"34 ","pages":"Article 101571"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MST: A Modified Sparse Transformer with depth-aware attention for multi-modal camera–LiDAR fusion in autonomous vehicles\",\"authors\":\"Badri Raj Lamichhane ,&nbsp;Bibek Paudel ,&nbsp;Sushant Paudel ,&nbsp;Gun Srijuntongsiri ,&nbsp;Teerayut Horanont\",\"doi\":\"10.1016/j.trip.2025.101571\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sensor fusion plays a pivotal role in enhancing the accuracy, safety, and decision-making capabilities of autonomous vehicles by integrating camera and LiDAR data. Cameras provide rich semantic information, while LiDAR offers precise depth estimation; their fusion is crucial for robust perception in complex driving scenarios. Transformer-based models have emerged as effective tools for multimodal fusion by leveraging self-attention to capture intricate relationships between sensor data. However, traditional transformers face computational efficiency challenges with long input sequences and sparse data. To address these limitations, we propose the Modified Sparse Transformer (MST) for camera–LiDAR fusion. The MST reduces attention matrix complexity, enabling faster processing while maintaining high performance with fewer parameters. Key innovations include depth-aware attention mechanisms, cross-modal feature alignment, and dynamic instance interaction modules. These collectively enhance object detection accuracy in challenging conditions such as low visibility and dense traffic. Experiments on benchmark datasets demonstrate significant improvements in both accuracy and efficiency compared to existing methods.</div></div>\",\"PeriodicalId\":36621,\"journal\":{\"name\":\"Transportation Research Interdisciplinary Perspectives\",\"volume\":\"34 \",\"pages\":\"Article 101571\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Research Interdisciplinary Perspectives\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590198225002507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TRANSPORTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Interdisciplinary Perspectives","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590198225002507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TRANSPORTATION","Score":null,"Total":0}
引用次数: 0

摘要

传感器融合通过集成摄像头和激光雷达数据,在提高自动驾驶汽车的准确性、安全性和决策能力方面发挥着关键作用。摄像头提供丰富的语义信息,而激光雷达提供精确的深度估计;它们的融合对于在复杂的驾驶场景中获得稳健的感知至关重要。基于变压器的模型已经成为多模态融合的有效工具,通过利用自关注来捕获传感器数据之间的复杂关系。然而,传统的变压器在输入序列长、数据稀疏的情况下,面临着计算效率的挑战。为了解决这些限制,我们提出了用于相机-激光雷达融合的改进稀疏变压器(MST)。MST降低了注意力矩阵的复杂性,使处理速度更快,同时以更少的参数保持高性能。关键创新包括深度感知注意机制、跨模态特征对齐和动态实例交互模块。这些共同提高了在低能见度和密集交通等具有挑战性的条件下的目标检测精度。在基准数据集上的实验表明,与现有方法相比,该方法在准确性和效率方面都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MST: A Modified Sparse Transformer with depth-aware attention for multi-modal camera–LiDAR fusion in autonomous vehicles
Sensor fusion plays a pivotal role in enhancing the accuracy, safety, and decision-making capabilities of autonomous vehicles by integrating camera and LiDAR data. Cameras provide rich semantic information, while LiDAR offers precise depth estimation; their fusion is crucial for robust perception in complex driving scenarios. Transformer-based models have emerged as effective tools for multimodal fusion by leveraging self-attention to capture intricate relationships between sensor data. However, traditional transformers face computational efficiency challenges with long input sequences and sparse data. To address these limitations, we propose the Modified Sparse Transformer (MST) for camera–LiDAR fusion. The MST reduces attention matrix complexity, enabling faster processing while maintaining high performance with fewer parameters. Key innovations include depth-aware attention mechanisms, cross-modal feature alignment, and dynamic instance interaction modules. These collectively enhance object detection accuracy in challenging conditions such as low visibility and dense traffic. Experiments on benchmark datasets demonstrate significant improvements in both accuracy and efficiency compared to existing methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transportation Research Interdisciplinary Perspectives
Transportation Research Interdisciplinary Perspectives Engineering-Automotive Engineering
CiteScore
12.90
自引率
0.00%
发文量
185
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信